Advertisement

Hydrobiologia

, Volume 834, Issue 1, pp 47–61 | Cite as

Quantitative response of riverine benthic invertebrates to sediment grain size and shear stress

  • Stefan LorenzEmail author
  • Christian Wolter
Primary Research Paper

Abstract

The most widespread pressure impacting river ecological status is the degradation of key hydromorphologic elements, such as sediment type and flow rate. However, almost nothing is known about the quantitative relationship between benthic invertebrate abundance and these elements. This synthesis compiles quantitative data on physical requirements and thresholds for invertebrates relative to two hydromorphologic factors: substrate size and hydraulic energy (measured as shear stress). Both factors are commonly a focus of river rehabilitation. However, we found only limited literature data that we could use to identify invertebrate preferences (189 taxa). Preferred substrate sizes of all stream epifauna we examined varied between 0.05 and 400 mm and they prefer shear stresses from 0.13 to 3.67 N m−2. There was no difference in variation of preferred conditions between the examined taxonomic levels. We suspect that taxa preferring hydraulic environments with shear stresses < 0.64 N m−2 are affected more by environmental factors than solely being constrained by substrate or hydraulic energy preferences. Such taxa might be useful as sensitive indicator species for evaluating stream integrity. Hence, to optimize restoration success for riverine biota, hydromorphological forces should be mitigated by manipulating habitat complexity in a way that it enhances intact ecological processes.

Keywords

Hydraulic preference Hydromorphology–biota interaction Indicator species River integrity Substrate preference 

Notes

Acknowledgements

We thank Daniel Graeber for helpful comments on statistics and an anonymous reviewer for his help in linguistic editing of the manuscript. This study was supported by the project REFORM that received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 282656.

Supplementary material

10750_2019_3908_MOESM1_ESM.docx (97 kb)
Supplementary material 1 (DOCX 96 kb)
10750_2019_3908_MOESM2_ESM.docx (71 kb)
Supplementary material 2 (DOCX 71 kb)
10750_2019_3908_MOESM3_ESM.docx (102 kb)
Supplementary material 3 (DOCX 101 kb)
10750_2019_3908_MOESM4_ESM.docx (31 kb)
Supplementary material 4 (DOCX 31 kb)

References

  1. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht.Google Scholar
  2. Ambühl, H., 1960. Die Bedeutung der Strömung als ökologischer Faktor. PhD, ETH Zürich.Google Scholar
  3. Angradi, T. R., 1999. fine sediment and macroinvertebrate assemblages in Appalachian streams: a field experiment with biomonitoring applications. Journal of the North American Benthological Society 18: 49–66.Google Scholar
  4. Barnes, J. B., I. P. Vaughan & S. J. Ormerod, 2013. Reappraising the effects of habitat structure on river macroinvertebrates. Freshwater Biology 58: 2154–2167.Google Scholar
  5. Beauger, A., N. Lair, P. Reyes-Marchant & J. L. Peiry, 2006. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia 571: 63–76.Google Scholar
  6. Bérg, K., P. Jónasson & K. W. Ockelmann, 1962. The respiration of some animals from the Profundal Zone of a lake. Hydrobiologia 19: 1–39.Google Scholar
  7. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.PubMedGoogle Scholar
  8. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. G. Solimini, W. Van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.Google Scholar
  9. Borchardt, D., 1993. Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams. Freshwater Biology 29: 221–227.Google Scholar
  10. Bradbeer, P. A. & A. A. Savage, 1980. Some observations on the distribution and life history of Caenis robusta Eaton (Ephemeroptera) in Cheshire and North Shropshire, England. Hydrobiologia 68: 87–90.Google Scholar
  11. Brodersen, K. P., O. L. E. Pedersen, I. R. Walker & M. T. Jensen, 2008. Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology 53: 593–602.Google Scholar
  12. Buss, D., D. Baptista, J. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.Google Scholar
  13. Chessman, B. C., K. A. Fryirs & G. J. Brierly, 2006. Linking geomorphic character, behaviour and condition to fluvial biodiversity: implications for river management. Aquatic Conservation 16: 267–288.Google Scholar
  14. Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.Google Scholar
  15. Culp, J. M., S. J. Walde & R. W. Davies, 1983. Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40: 1568–1574.Google Scholar
  16. Davis, J. A. & L. A. Barmuta, 1989. An ecologically useful classification of near-bed flows in streams and rivers. Freshwater Biology 21: 271–282.Google Scholar
  17. Dewson, Z. S., A. B. W. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.Google Scholar
  18. Dolédec, S., N. Lamouroux, U. Fuchs & S. Mérigoux, 2007. Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52: 145–164.Google Scholar
  19. Downes, B. J. & J. Lancaster, 2010. Does dispersal control population densities in advection-dominated systems? A fresh look at critical assumptions and a direct test. Journal of Animal Ecology 79: 235–248.PubMedGoogle Scholar
  20. Downes, B. J., P. S. Lake, A. Glaister & N. R. Bond, 2006. Effects of sand sedimentation on the macroinvertebrate fauna of lowland streams: are the effects consistent? Freshwater Biology 51: 144–160.Google Scholar
  21. Duan, X., Z. Wang, M. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.Google Scholar
  22. EEA, 2000. European Waters – Assessment of Status and Pressures. European Environmental Agency, Copenhagen.Google Scholar
  23. Elliott, J. M., 2008. The ecology of riffle beetles (Coleoptera: Elmidae). Freshwater Reviews 1: 189–203.Google Scholar
  24. Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.Google Scholar
  25. Fehér, J., J. Gáspár, K. Szurdiné-Veres, A. Kiss, P. Kristensen, M. Peterlin, L. Globevnik, T. Kirn, S. Semerádova, A. Künitzer, U. Stein, K. Austnes, C. Spiteri, T. Prins, E. Laukkonen & A.-S. Heiskanen, 2012. Hydromorphological alterations and pressures in European rivers, lakes, transitional and coastal waters. Thematic assessment for EEA Water 2012 Report. European Topic Centre on Inland, Coastal and Marine Waters, Prague, ETC/ICM Technical Report 2/2012.Google Scholar
  26. Feld, C. K. & D. Hering, 2007. Community structure of function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380–1399.Google Scholar
  27. Feld, C. K., S. Birk, D. C. Bradley, D. Hering, J. Kail, A. Marzin, A. Melcher, D. Nemitz, M. L. Pedersen, F. Pletterbauer, D. Pont, P. F. M. Verdonschot & N. Friberg, 2011. From natural to degraded rivers and back again: a test of restoration ecology theory and practice. Advances in Ecological Research 44: 119–209.Google Scholar
  28. Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks, CA.Google Scholar
  29. Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.Google Scholar
  30. Gabel, F., X.-F. Garcia, I. Schnauder & M. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57: 2425–2435.Google Scholar
  31. Gibbins, C., R. J. Batalla & D. Vericat, 2010. Invertebrate drift and benthic exhaustion during disturbance: response of mayflies (Ephemeroptera) to increasing shear stress and river-bed instability. River Research and Applications 26: 499–511.Google Scholar
  32. Gore, J. A., 1996. Responses of aquatic biota to hydrological change. In Petts, G. E. & P. Calow (eds), River Biota, Diversity and Dynamics. Blackwell Science, Oxford: 209–230.Google Scholar
  33. Graeber, D., M. Pusch, S. Lorenz & M. Brauns, 2013. Cascading effects of flow reduction on the benthic invertebrate community in a lowland river. Hydrobiologia 717: 147–159.Google Scholar
  34. Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez, J. Murphy & A. Schmidt-Kloiber, 2007. Plecoptera Indicator Database. Euro-limpacs project, Workpackage 7 – indicators of ecosystem health, Task 4, www.freshwaterecology.info, version 5.0 (accessed on 29.11.2012).
  35. Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez & C. Davie, 2009. Distribution and ecological preferences of European freshwater organisms. Pensoft Publishers, Sofia-Moscow.Google Scholar
  36. Growns, I. O. & J. A. Davis, 1994. Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian stream. Journal of the North American Benthological Society 13: 417–438.Google Scholar
  37. Haase, P., D. Hering, S. C. Jähnig, A. W. Lorenz & A. Sundermann, 2013. The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704: 475–488.Google Scholar
  38. Hart, D. & C. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.Google Scholar
  39. Hauer, C., G. Unfer, W. Graf, P. Leitner, B. Zeiringer & H. Habersack, 2012. Hydro-morphologically related variance in benthic drift and its importance for numerical habitat modelling. Hydrobiologia 683: 83–108.Google Scholar
  40. Hering, D., J. Arovitta, A. Baattrupp-Pedersen, K. Brabec, T. Buijze, F. Ecke, N. Friberg, M. Gielczewski, K. Januschke, J. Kohler, B. Kupilas, A. Lorenz, S. Muhar, A. Paillex, M. Poppe, T. Schmidt, S. Schmutz, J. E. Vermaat, P. Verdonschot & R. Verdonschot, 2015. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study on 20 European restoration projects. Journal of Applied Ecology 52: 1518–1527.Google Scholar
  41. Holomuzki, J. R. & B. J. F. Biggs, 2000. Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. Journal of the North American Benthological Society 19: 670–679.Google Scholar
  42. Imbert, J. B. & J. Perry, 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.Google Scholar
  43. Int Panis, L., L. Bervoets & R. Verheyen, 1994. The spatial distribution of Caenis horaria (L., 1758) (Caenidae, Ephemeroptera) in a pond in Niel (Belgium). Bulletin et annales de la Société entomologique de Belgique 131: 47–52.Google Scholar
  44. Jähnig, S. C. & A. W. Lorenz, 2008. Substrate-specific macroinvertebrate diversity patterns following stream restoration. Aquatic Sciences - Research Across Boundaries 70: 292–303.Google Scholar
  45. Janauer, G. A., U. Schmidt-Mumm & B. Schmidt, 2010. Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering 36: 1138–1145.Google Scholar
  46. Johnson, R. K., 1995. The indicator concept in freshwater biomonitoring. In Cranston, P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne: 11–27.Google Scholar
  47. Jowett, I. G., 2000. Flow management. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Christchurch: 289–312.Google Scholar
  48. Jowett, I. G., 2003. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Research and Applications 19: 495–507.Google Scholar
  49. Kail, J. & D. Hering, 2009. The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Research and Applications 25: 537–550.Google Scholar
  50. Kakouei, K., J. Kiesel, J. Kail, M. Pusch & S. C. Jähnig, 2017. Quantitative hydrological preferences of benthic stream invertebrates in Germany. Ecological Indicators 79: 163–172.Google Scholar
  51. Krumbein, W. C. & L. L. Sloss, 1963. Stratigraphy and Sedimentation. Freeman & Co., San Francisco.Google Scholar
  52. Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.Google Scholar
  53. Lamouroux, N., S. Mérigoux, S. Dolédec & T. H. Snelder, 2013. Transferability of hydraulic preference models for aquatic macroinvertebrates. River Research and Applications 29: 933–937.Google Scholar
  54. Lange, C., M. Schneider, M. Mutz, M. Haustein, M. Halle, M. Seidel, H. Sieker, C. Wolter & R. Hinkelmann, 2015. Model-based design for resoration of a small urban river. Journal of Hydro-environment Research 9: 226–236.Google Scholar
  55. Lorenz, A. W. & C. K. Feld, 2013. Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704: 489–501.Google Scholar
  56. Lorenz, A. W., S. C. Jähnig & D. Hering, 2009. Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental Management 44: 745–754.PubMedGoogle Scholar
  57. Lorenz, S., V. Martinez-Fernández, C. Alonso, E. Mosselman, D. García de Jalón, M. González del Tánago, B. Belletti, D. Hendriks & C. Wolter, 2016a. Fuzzy cognitive mapping for predicting hydromorphological responses to multiple pressures in rivers. Journal of Applied Ecology 53: 559–566.Google Scholar
  58. Lorenz, S., M. Leszinski & D. Graeber, 2016b. Meander reconnection method determines restoration success for macroinvertebrate communities in a German lowland river. International Review of Hydrobiology 101: 123–131.Google Scholar
  59. Lyche-Solheim, A., C. K. Feld, S. Birk, G. Phillips, L. Carvalho, G. Morabito, U. Mischke, N. Willby, M. Søndergaard, S. Hellsten, A. Kolada, M. Mjelde, J. Böhmer, O. Miler, M. Pusch, C. Argillier, E. Jeppesen, T. Lauridsen & S. Poikane, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704: 57–74.Google Scholar
  60. Mackie, G. L., 2007. Biology of Freshwater Corbiculid and Sphaeriid Clams of North America. Ohio Biological Survey Bulletin New Series, Columbus.Google Scholar
  61. Maxted, J. R., B. F. Evans & M. R. Scarsbrook, 2003. Development of standard protocols for macroinvertebrate assessment of soft-bottomed streams in New Zealand. New Zealand Journal of Marine and Freshwater Research 37: 793–807.Google Scholar
  62. McCabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.PubMedGoogle Scholar
  63. Meier, C., P. Haase, P. Rolauffs, K. Schindehütte, F. Schöll, A. Sundermann & D. Hering, 2006. Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EGWasserrahmenrichtlinie. http://www.fliessgewaesserbewertung.de/downloads/abschlussbericht20060331anhangIX.pdf.
  64. Menninger, H. L. & M. A. Palmer, 2006. Restoring ecological communities: from theory to practice. In Falk, D. A., M. A. Palmer & J. B. Zedler (eds), Foundations of Restoration Ecology. Island Press, Washington, DC: 88–112.Google Scholar
  65. Mérigoux, S. & S. Dolédec, 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613.Google Scholar
  66. Mérigoux, S., N. Lamouroux, J.-M. Olivier & S. Dolédec, 2009. Invertebrate hydraulic preferences and predicted impacts of changes in discharge in a large river. Freshwater Biology 54: 1343–1356.Google Scholar
  67. Miller, S. W., P. Budy & J. C. Schmidt, 2010. Quantifying macroinvertebrate responses to in-stream habitat restoration: applications of meta-analysis to river restoration. Restoration Ecology 18: 8–19.Google Scholar
  68. Milner, V. S. & D. J. Gilvear, 2012. Characterization of hydraulic habitat and retention across different channel types; introducing a new field-based technique. Hydrobiologia 694: 219–233.Google Scholar
  69. Milner, V. S., N. J. Willby, D. J. Gilvear & C. Perfect, 2015. Linkages between reach-scale physical habitat and invertebrate assemblages in upland streams. Marine and Freshwater Research 66: 438–448.Google Scholar
  70. Möbes-Hansen, B. & J. A. Waringer, 1998. The influence of hydraulic stress on microdistribution patterns of zoobenthos in a sandstone brook (Weidlingbach, Lower Austria). International Review of Hydrobiology 83: 381–396.Google Scholar
  71. Monk, W. A., P. J. Wood, D. M. Hannah, C. A. Extence, R. P. Chadd & M. J. Dunbar, 2012. How does macroinvertebrate taxonomic resolution influence ecohydrological relationships in riverine ecosystems? Ecohydrology 5: 36–45.Google Scholar
  72. Muotka, T. & J. Syrjänen, 2007. Changes in habitat structure, benthic invertebrate diversity, trout populations and ecosystem processes in restored forest streams: a boreal perspective. Freshwater Biology 52: 724–737.Google Scholar
  73. Pabst, S., N. Scheifhacken, J. Hesselschwerdt & K. M. Wantzen, 2008. Leaf litter degradation in the wave impact zone of a pre-alpine lake. Hydrobiologia 613: 117–131.Google Scholar
  74. Palmer, M. A., H. L. Menninger & E. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.Google Scholar
  75. Pan, B. Z., Z. Y. Wang & M. Z. Xu, 2012. Macroinvertebrates in abandoned channels: assemblage characteristics and their indications for channel management. River Research and Applications 28: 1149–1160.Google Scholar
  76. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. Bioscience 47: 769–784.Google Scholar
  77. Poole, W. & K. Stewart, 1976. The vertical distribution of macrobenthos within the substratum of the Brazos river, Texas. Hydrobiologia 50: 151–160.Google Scholar
  78. Power, M. E., J. R. Holomuzki & R. L. Lowe, 2013. Food webs in Mediterranean rivers. Hydrobiologia 719: 119–136.Google Scholar
  79. Quinlan, R. & J. P. Smol, 2001. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46: 1529–1551.Google Scholar
  80. R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
  81. Rabeni, C. F. & G. W. Minshall, 1977. Factors affecting micro-distribution of stream benthic insects. Oikos 29: 33–43.Google Scholar
  82. Reice, S. R., 1980. The role of substratum in benthic macroinvertebrate microdistribution and litter decomposition in a woodland stream. Ecology 61: 580–590.Google Scholar
  83. Robson, B. J. & E. T. Chester, 1999. Spatial patterns of invertebrate species richness in a river: the relationship between riffles and microhabitats. Austral Ecology 24: 599–607.Google Scholar
  84. Robson, B. J. & B. D. Mitchell, 2010. Metastability in a river subject to multiple disturbances may constrain restoration options. Marine and Freshwater Research 61: 778–785.Google Scholar
  85. Robson, B. J., E. T. Chester & J. A. Davis, 1999. Manipulating the intensity of near-bed turbulence in rivers: effects on benthic invertebrates. Freshwater Biology 42: 645–653.Google Scholar
  86. Roni, P., K. Hanson, T. Beechie, G. Pess, M. Pollock & D. M. Bartley, 2005. Habitat Rehabilitation for Inland Fisheries. FAO Fisheries Technical Paper, 484, FAO, Rome.Google Scholar
  87. Roni, P., K. Hanson & T. Beechie, 2008. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North American Journal of Fisheries Management 28: 856–890.Google Scholar
  88. Schmidt-Kloiber, A. & D. Hering, 2015. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.Google Scholar
  89. Schnauder, I., S. Rudnick, X.-F. Garcia & J. Aberle, 2010. Incipient Motion and Drift of Benthic Invertebrates in Boundary Shear Layers. In Dittrich, K., J. Aberle & P. Geisenhainer (eds), Riverflow 2010. Bundesanstalt für Wasserbau, Karlsruhe.Google Scholar
  90. Schröder, M., J. Kiesel, A. Schattmann, S. C. Jähnig, A. W. Lorenz, S. Kramm, H. Keizer-Vlek, P. Rolauffs, W. Graf, P. Leitner & D. Hering, 2013. Substratum associations of benthic invertebrates in lowland and mountain streams. Ecological Indicators 30: 178–189.Google Scholar
  91. Shvidchenko, A. B., G. Pender & T. B. Hoey, 2001. Critical shear stress for incipient motion of sand/gravel streambeds. Water Resources Research 37: 2273–2283.Google Scholar
  92. Singh, J., O. P. Gusain & M. P. Gusain, 2010. Benthic insect-substratum relationship along an altitudinal gradient in a Himalayan stream, India. International Journal of Ecology and Environmental Sciences 36: 215–231.Google Scholar
  93. Söhngen, B., J. Koop, S. Knight, J. Rythönen, P. Beckwith, N. Ferrari, J. Iribarren, T. Keevin, C. Wolter & S. Maynord, 2008. Considerations to Reduce Environmental Impacts of Vessels. PIANC Report 99. PIANC, Brussels.Google Scholar
  94. Sonderegger, D., 2012. SiZer: SiZer: significant zero crossings. R package version 0.1-4. https://CRAN.R-project.org/package=SiZer.
  95. Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 15: 353–391.Google Scholar
  96. Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409–1424.Google Scholar
  97. Statzner, B., 1981. The relationship between “hydraulic stress” and microdistributions of benthic macroinvertebrates in a lowland running water system, the Schierenseebrooks (North Germany). Archiv für Hydrobiologie 91: 192–218.Google Scholar
  98. Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7: 307–360.Google Scholar
  99. Statzner, B., F. Kohmann & A. G. Hildrew, 1991. Calibration of FST-hemispheres against bottom shear stress in a laboratory flume. Freshwater Biology 26: 227–231.Google Scholar
  100. Stoll, S., P. Breyer, J. D. Tonkin, D. Früh & P. Haase, 2016. Scale-dependent effects of river habitat quality on benthic invertebrate communities – implications for stream restoration practice. Science of the Total Environment 553: 495–503.PubMedGoogle Scholar
  101. Sundermann, A., C. Antons, N. Cron, A. W. Lorenz, D. Hering & P. Haase, 2011a. Hydromorphological restoration of running waters: effects on benthic invertebrate assemblages. Freshwater Biology 56: 1689–1702.Google Scholar
  102. Sundermann, A., S. Stoll & P. Haase, 2011b. River restoration success depends on the species pool of the immediate surroundings. Ecological Applications 21: 1962–1971.PubMedGoogle Scholar
  103. Sundermann, A., M. Gerhardt, H. Kappes & P. Haase, 2013. Stressor prioritization in riverine ecosystems: Benthic invertebrates assemblages are shaped by water quality rather than by local habitat structure. Ecological Indicators 27: 83–96.Google Scholar
  104. Suren, A. M. & I. G. Jowett, 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51: 2207–2227.Google Scholar
  105. Timm, H., K. Mardi & T. Möls, 2008. Macroinvertebrates in Estonian streams: the effects of habitat, season, and sampling effort on some common metrics of biological quality. Estonian Journal of Ecology 57: 37–57.Google Scholar
  106. Tolkamp, H., 1982. Microdistribution of macroinvertebrates in lowland streams. Hydrobiological Bulletin 16: 133–148.Google Scholar
  107. Tonkin, J., S. Stoll, A. Sundermann & P. Haase, 2014. Dispersal distance and the pool of taxa, but not barriers, determine the colonisation of restored river reaches by benthic invertebrates. Freshwater Biology 59: 1843–1855.Google Scholar
  108. Tyler, E. H. M., P. J. Somerfield, E. V. Berghe, J. Bremner, E. Jackson, O. Langmead, M. L. D. Palomares & T. J. Webb, 2012. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Global Ecology and Biogeography 21: 922–934.Google Scholar
  109. USEPA (United States Environment Protection Agency), 2009. National Water Quality Inventory: Report to Congress. 2004 Reporting Cycle. United States Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  110. Vaughan, I., M. Diamond, A. Gurnell, K. A. Hall, A. Jenkins, N. J. Milner, L. A. Naylor, D. A. Sear, G. Woodward & S. J. Ormerod, 2009. Integrating ecology with hydromorphology: a priority for river science and managment. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 113–125.Google Scholar
  111. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0-387-95457-0.Google Scholar
  112. Verdonschot, P. F. M., B. M. Spears, C. K. Feld, S. Brucet, H. Keizer-Vlek, A. Borja, M. Elliott, M. Kernan & R. K. Johnson, 2013. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704: 453–474.Google Scholar
  113. Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.Google Scholar
  114. Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.Google Scholar
  115. Waters, T. F., 1995. Sediment in Streams: Sources, Biological Effects, and Controls. American Fisheries Society, Bethesda, MD.Google Scholar
  116. Weigel, B. M., L. Z. Wang, P. W. Rasmussen, J. T. Butcher, P. M. Stewart, T. P. Simon & M. J. Wiley, 2003. Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and forest ecoregion, USA. Freshwater Biology 48: 1440–1461.Google Scholar
  117. Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 507–524.Google Scholar
  118. Williams, D. D. & K. A. Moore, 1986. Microhabitat selection by a stream-dwelling amphipod – a multivariate-analysis approach. Freshwater Biology 16: 115–122.Google Scholar
  119. Wolter, C. & R. Arlinghaus, 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13: 63–89.Google Scholar
  120. Wolter, C., R. Arlinghaus, A. Sukhodolov & C. Engelhardt, 2004. A model of navigation induced currents in inland waterways and implications for juvenile fish displacement. Environmental Management 34: 656–668.PubMedGoogle Scholar
  121. Wolter, C., 2010. Functional vs scenic restoration – challenges to improve fish and fisheries in urban waters. Fisheries Management and Ecology 17: 176–185.Google Scholar
  122. Wolter, C., S. Lorenz, S. Scheunig, C. Schomaker, V. Martinez-Fernandez, C. Alonso, D. Garcia de Jalon, M. Gonzalez del Tanago, E. Mosselman, D. Hendriks & B. Beletti, 2015. Hydromorphic change and biotic response challenge efficient river rehabilitation. In: Angelopoulos, N., T. Buijse, M. van Oorschot & E. Kampa (eds) Proceedings of the International Conference on River and Stream Restoration “Novel Approaches to Assess and Rehabilitate Modified Rivers”. FP7 REFORM deliverable 7.5: 79–84.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Institute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionJulius Kühn-Institut, Federal Research Centre for Cultivated PlantsBerlinGermany

Personalised recommendations