Advertisement

Influence of wildfire and harvesting on aquatic and terrestrial invertebrate drift patterns in boreal headwater streams

  • Jordan Musetta-LambertEmail author
  • David Kreutzweiser
  • Paul Sibley
Primary Research Paper

Abstract

Forested headwater streams are strongly connected to their surrounding riparian areas via the transfer of energy subsidies that underpin instream food webs and, therefore, are highly sensitive to riparian disturbances that influence allochthonous inputs. We compared terrestrial and aquatic invertebrates found in drift across headwater streams in boreal forested catchments with wildfire, harvest with minimum 30-m riparian buffers, and reference catchment histories. Fire-disturbed streams contained significantly greater aquatic invertebrate abundance and biomass compared to reference and harvested streams, but no significant trends were seen for terrestrial invertebrate abundance or biomass. Furthermore, fire-disturbed streams supported distinct drifting invertebrate communities compared to reference and harvested sites, driven by high abundances of the mayfly Baetis and caddisfly Dolophilodes. Aquatic invertebrate drift communities were compositionally dissimilar between fire and harvested sites, but not reference sites and no trends were found for terrestrial invertebrate drift samples. Subtle but detectable differences in drifting invertebrate community metrics, structure, and biomass suggest that the effects of wildfire persist well beyond a decade post-fire in boreal headwater streams. Forest management that emulates natural fire disturbance, including streamside disturbance, may be important for promoting the observed patterns detected in our fire-disturbed catchments.

Keywords

Aquatic macroinvertebrate communities Terrestrial macroinvertebrate input Forest watersheds Catchment disturbance 

Notes

Acknowledgements

We greatly appreciate the technical assistance during field sampling and in the laboratory analyses by Scott Capell, Kevin Good, from Canadian Forest Service, and Kristin Daoust, Dylan Bowes, Colleen Wardlaw, and Greg Hanta at the University of Guelph. We also extend our thanks to Erik Emilson at Natural Resources Canada and Katherine Standen at Wilfrid Laurier University for statistical advice and R code. This research was performed as part of the Canadian Network of Aquatic Ecosystem Sciences (Grant Number 493796) awarded to Don Jackson, University of Toronto.

Supplementary material

10750_2019_3907_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 100 kb)
10750_2019_3907_MOESM2_ESM.xlsx (45 kb)
Supplementary material 2 (XLSX 44 kb)

References

  1. Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World Journal 1: 656–680.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Albin, D. P., 1979. Fire and stream ecology in some Yellowstone Lake tributaries. California Fish and Game 65: 216–238.Google Scholar
  3. Allan, J.D., & M. M. Castillo, 2007. Stream Ecology: the structure and function of running waters, 2nd edn. Springer, Dordrecht.Google Scholar
  4. Allan, J. D., M. S. Wipfli, J. P. Caouette, A. Prussian & J. Rodgers, 2003. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences 60: 309–320.CrossRefGoogle Scholar
  5. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  6. Anderson, M. J., 2005. PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. Department of Statistics, University of Auckland, New Zealand.Google Scholar
  7. Anholt, B. R., 1995. Density dependence resolves the stream drift paradox. Ecology 76: 2235–2239.  https://doi.org/10.2307/1941697.CrossRefGoogle Scholar
  8. Bateman, D. S., M. R. Sloat, R. E. Gresswell, A. M. Berger, D. P. Hockman-Wert, D. W. Leer & A. E. Skaugset, 2016. Effects of stream-adjacent logging in fishless headwaters on downstream coastal cutthroat trout. Canadian Journal of Fisheries and Aquatic Sciences 72: 1–16.Google Scholar
  9. Bates, D., M. Maechler, B. Bolker, & S. Walker, 2017. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1.13. http://cran.r-project.org/web/packages/lme4.
  10. Baxter, C. V., K. D. Fausch & W. C. Saunders, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201–220.CrossRefGoogle Scholar
  11. Bess, E. C., R. R. Parmenter, S. Mccoy & M. C. Molles, 2002. Responses of a riparian forest-floor arthropod community to wildfire in the middle Rio Grande Valley, New Mexico. Environmental Entomology 31: 774–784.CrossRefGoogle Scholar
  12. Bixby, R. J., S. D. Cooper, R. E. Gresswell, L. E. Brown, C. N. Dahm & K. A. Dwire, 2015. Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Science 34: 1340–1350.CrossRefGoogle Scholar
  13. Braithwaite, N. T. & A. U. Mallik, 2012. Edge effects of wildfire and riparian buffers along boreal forest streams. Journal of Applied Ecology 49: 192–201.CrossRefGoogle Scholar
  14. Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift—a review. Hydrobiologia 166: 77–93.CrossRefGoogle Scholar
  15. Buttle, J. M., 2002. Rethinking the donut: the case for hydrologically relevant buffer zones. Hydrological Processes 16: 3093–3096.CrossRefGoogle Scholar
  16. Cáceres, M.D., 2013. How to use the indicspecies package (ver. 1.7.1). R package version 2.22, URL https://CRAN.R-project.org/package=indicspecies.
  17. Clarke, K. R. & R. N. Gorley, 2006. Primer v6: User Manual. PRIMER-E, Plymouth.Google Scholar
  18. Clarke, K. R. & R. M. Warwick, 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E, Plymouth.Google Scholar
  19. Drever, C. R., G. Peterson, C. Messier, Y. Bergeron & M. Flannigan, 2006. Can forest management based on natural disturbances maintain ecological resilience? Canadian Journal of Forestry Research 36: 2285–2299.CrossRefGoogle Scholar
  20. Environment and Climate Change Canada (ECCC), 2017. Ottawa, Ontario, http://climate.weather.gc.ca/climate_data/hourly_data_e.html?StationID=52818
  21. Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.Google Scholar
  22. Fortino, K., A. E. Hershey & K. J. Goodman, 2004. Utility of biological monitoring for detection of timber harvest effects on streams and evaluation of best management practices: a review. Journal of the North American Benthological Society 23: 634–646.CrossRefGoogle Scholar
  23. Gomi, T., R. C. Sidle & J. S. Richardson, 2002. Understanding processes and downstream linkages of headwater systems. BioScience 52: 905.CrossRefGoogle Scholar
  24. Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology: An Introduction for Ecologists. Wiley, New York.Google Scholar
  25. Gunn, J. M. & R. Pitblado, 2004. Lake trout, the boreal shield, and the factors that shape lake trout ecosystems. In Gunn, J. R., R. J. Steedman & R. A. Ryder (eds), Boreal Shield Watersheds: Lake Trout Ecosystems in a Changing Environment. CRC Press, New York: 3–19.Google Scholar
  26. Hoover, S. E. R., L. G. W. Shannon & J. D. Ackerman, 2007. The effect of riparian condition on invertebrate drift in mountain streams. Aquatic Sciences 69: 544–553.CrossRefGoogle Scholar
  27. Houser, J. N., P. J. Mulholland & K. O. Maloney, 2006. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow. Journal of Environment Quality 35: 352.CrossRefGoogle Scholar
  28. Hunt, R. L., 1975. Food relations and behavior of salmonid fishes. 6.1. Use of terrestrial invertebrates as food by salmonids. In Hassler, A. D. (ed.), Coupling of Land and Water Systems, Vol. 10. Springer, New York: 137–151.CrossRefGoogle Scholar
  29. Imbert, J. & J. Perry, 2000. Drift and benthic invertebrate responses to step-wise and abrupt increases in non-scouring flow. Hydrobiologia 436: 191–208.  https://doi.org/10.1023/A:1026582218786.CrossRefGoogle Scholar
  30. Jackson, B. K., S. M. P. Sullivan & R. L. Malison, 2012. Wildfire severity mediates fluxes of plant material and terrestrial invertebrates to mountain streams. Forest Ecology and Management 278: 27–34.CrossRefGoogle Scholar
  31. Jyväsjärvi, J., H. Suurkuukka, R. Virtanen, J. Aroviita & T. Muotka, 2014. Does the taxonomic completeness of headwater stream assemblages reflect the conservation status of the riparian forest? Forest Ecology and Management 334: 293–300.CrossRefGoogle Scholar
  32. Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Archiv fur Hydrobiologie 68: 465–515.Google Scholar
  33. Kawaguchi, Y., Y. Taniguchi & S. Nakano, 2003. Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology 84: 701–708.CrossRefGoogle Scholar
  34. Kennedy, T. A., C. B. Yackulic, W. F. Cross, P. E. Grams, M. D. Yard & A. J. Copp, 2014. The relation between invertebrate drift and two primary controls, discharge and benthic densities, in a large regulated river. Freshwater Biology 59: 557–572.CrossRefGoogle Scholar
  35. Kreutzweiser, D. P., K. P. Good, S. S. Capell & S. B. Holmes, 2008. Leaf-litter decomposition and macroinvertebrate communities in boreal forest streams linked to upland logging disturbance. Journal of the North American Benthological Society 27: 1–15.CrossRefGoogle Scholar
  36. Kreutzweiser, D. P., S. S. Capell & S. B. Holmes, 2009. Stream temperature responses to partial-harvest logging in riparian buffers of boreal mixedwood forest watersheds. Canadian Journal of Forest Research 39: 497–506.CrossRefGoogle Scholar
  37. Kreutzweiser, D. P., P. K. Sibley, J. S. Richardson & A. M. Gordon, 2012. Introduction and a theoretical basis for using disturbance by forest management activities to sustain aquatic ecosystems. Freshwater Science 31: 224–231.CrossRefGoogle Scholar
  38. Kuznetsova, A, P.B. Brockhoff, R.H.B. Christensen, 2016. lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-29, URL http://CRAN.R-project.org/package=lmerTest.
  39. Lenth, R.V., 2016. lsmeans: least-Squares Means. R package version 2.22, URL https://CRAN.R-project.org/package=lsmeans.
  40. Lepori, E. & N. Hjerdt, 2006. Disturbance and aquatic biodiversity: reconciling contrasting views. BioScience 56: 809–818.CrossRefGoogle Scholar
  41. Lidman, J., M. Jonsson, R. M. Burrows, M. Bundschuh & R. A. Sponseller, 2017. Composition of riparian litter input regulates organic matter decomposition: implications for headwater stream functioning in a managed forest landscape. Ecology and Evolution 7: 1068–1077.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Likens, G. & F. Bormann, 1974. Linkages between terrestrial and aquatic ecosystems. BioScience 24: 447–456.CrossRefGoogle Scholar
  43. Malison, R. L. & C. V. Baxter, 2010a. The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers. Canadian Journal of Fisheries and Aquatic Sciences 67: 570–579.CrossRefGoogle Scholar
  44. Malison, R. L. & C. V. Baxter, 2010b. Effects of wildfire of varying severity on benthic stream insect assemblages and emergences. Journal of the North American Benthological Society 29: 1324–1338.CrossRefGoogle Scholar
  45. Mellon, C. D., M. S. Wipfli & J. L. Li, 2008. Effects of forest fire on headwater stream macroinvertebrate communities in eastern Washington, U.S.A. Freshwater Biology 53: 2331–2343.Google Scholar
  46. Merritt, R. W., K. W. Cummins & M. B. Berg, 2014. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque.Google Scholar
  47. Meyer, J. L. & J. B. Wallace, 2001. Lost linkages and lotic ecology: rediscovering small streams, Chapter 14. In Press, M., N. Huntly & S. Levin (eds), Ecology: Achievement and Challenge. Blackwell Science, Oxford: 295–317.Google Scholar
  48. Meyer, J. L., D. L. Strayer, J. B. Wallace, S. L. Eggert, G. S. Helfman & N. E. Leonard, 2007. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association 43: 86–103.CrossRefGoogle Scholar
  49. Mihuc, T. & G. W. Minshall, 1995. Trophic generalists vs. trophic specialists: implications for food web dynamics in post-fire streams. Ecology 76: 2361–2372.CrossRefGoogle Scholar
  50. Mihuc, T. B., G. W. Minshall & C. T. Robinson, 1996. Response of benthic macroinvertebrate populations in Cache Creek, Yellowstone National Park to the 1988 wildfires. In Greenlee, J. M. (ed.), The Ecological Implications of Fire in Greater Yellowstone. International Association of Wildland Fire, Fairfield, Washington: 83–94.Google Scholar
  51. Minshall, G. W., 2003. Responses of stream benthic macroinvertebrates to fire. Forest Ecology and Management 178: 155–161.CrossRefGoogle Scholar
  52. Minshall, G. W., J. T. Brock & J. D. Varley, 1989. Wildfires and Yellowstone’s stream ecosystems. BioScience 39: 707–715.CrossRefGoogle Scholar
  53. Minshall, G. W., C. T. Robinson & D. E. Lawrence, 1997. Postfire responses of lotic ecosystems in Yellowstone National Park, USA. Canadian Journal of Fisheries and Aquatic Sciences 54: 2509–2525.CrossRefGoogle Scholar
  54. Minshall, G. W., C. T. Robinson, D. E. Lawrence, D. A. Andrews & J. T. Brock, 2001a. Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire. International Journal of Wildland Fire 10: 201–213.CrossRefGoogle Scholar
  55. Minshall, G. W., T. V. Royer & C. T. Robinson, 2001b. Response of the Cache Creek macroinvertebrates during the first 10 years following disturbance by the 1988 Yellowstone wildfires. Canadian Journal of Fisheries and Aquatic Science 58: 1077–1088.CrossRefGoogle Scholar
  56. Moore, R. D. & J. S. Richardson, 2003. Progress towards understanding the structure, function, and ecological significance of small stream channels and their riparian zones. Canadian Journal of Fisheries Research 33: 1349–1351.CrossRefGoogle Scholar
  57. Moore, R. D. & J. S. Richardson, 2012. Natural disturbance and forest management in riparian zones: comparison of effects at reach, catchment, and landscape scales. Freshwater Science 31: 239–247.CrossRefGoogle Scholar
  58. Musetta-lambert, J., E. Muto, D. Kreutzweiser & P. Sibley, 2017. Forest ecology and management wildfire in boreal forest catchments influences leaf litter subsidies and consumer communities in streams: implications for riparian management strategies. Forest Ecology and Management 391: 29–41.  https://doi.org/10.1016/j.foreco.2017.01.028.CrossRefGoogle Scholar
  59. Muto, E. A., D. P. Kreutzweiser & P. K. Sibley, 2009. The influence of riparian vegetation on leaf litter inputs to Boreal Shield streams: implications for partial-harvest logging in riparian reserves. Canadian Journal of Forest Research 39: 917–927.CrossRefGoogle Scholar
  60. Nakano, S. & M. Murakami, 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Science 98: 166–170.CrossRefGoogle Scholar
  61. Nakano, S., H. Miyasaka & N. Kuhara, 1999. Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435–2441.Google Scholar
  62. Naylor, B. J., R. W. Mackereth, D. P. Kreutzweiser & P. K. Sibley, 2012. Merging END concepts with protection of fish habitat and water quality in new direction for riparian forests in Ontario: a case study of science guiding policy and practice. Freshwater Science 31: 248–257.CrossRefGoogle Scholar
  63. Ontario Ministry of Natural Resources (OMNR), 2010. Forest Management Guide for Conserving Biodiversity at the Stand and Site Scales. Queen’s Printer for Ontario, Toronto: 211.Google Scholar
  64. Pettit, N. E. & R. J. Naiman, 2007. Fire in the riparian zone: characteristics and ecological consequences. Ecosystems 10: 673–687.CrossRefGoogle Scholar
  65. Piccolo, J. J. & M. S. Wipfli, 2002. Does red alder (Alnus rubra) in upland riparian forests elevate macroinvertebrate and detritus export from headwater streams to downstream habitats in southeastern Alaska? Canadian Journal of Fisheries and Aquatic Sciences 59: 503–513.CrossRefGoogle Scholar
  66. Pozo, J., E. González, J. R. Díez, J. Molinero & A. Elósegui, 1997. Inputs of particulate organic matter to streams with different riparian vegetation. Journal of the North American Benthological Society 16: 602–611.CrossRefGoogle Scholar
  67. Prepas, E. E., B. Pinel-Alloul, R. J. Steedman, D. Planas & T. Charette, 2003. Impacts of forest disturbance on boreal surface waters in Canada. In Burton, P. J., C. Messier, D. W. Smith & W. L. Adamowicz (eds), Towards Sustainable Management of the Boreal Forest. NRC Research Press, Ottawa: 369–393.Google Scholar
  68. Principe, R. E. & M. C. Del Corigliano, 2006. Benthic, drifting and marginal macroinvertebrate assemblages in a lowland river: Temporal and spatial variations and size structure. Hydrobiologia 553: 303–317.CrossRefGoogle Scholar
  69. Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.CrossRefGoogle Scholar
  70. Ramirez, A. & C. M. Pringle, 1998. Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica. Hydrobiologia 386: 19–26.CrossRefGoogle Scholar
  71. Richardson, J. S. & R. J. Danehy, 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53: 131–147.Google Scholar
  72. Richardson, J. S., E. Taylor, D. Schluter, M. Pearson & T. Hatfield, 2010. Do riparian zones qualify as critical habitat for endangered freshwater fishes? Canadian Journal of Fisheries and Aquatic Sciences 67: 1197–1204.CrossRefGoogle Scholar
  73. Richardson, J. S., R. J. Naiman & P. A. Bisson, 2012. How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshwater Science 31: 232–238.CrossRefGoogle Scholar
  74. Roby, K. B. & D. L. Azuma, 1995. Changes in a reach of a northern California stream following wildfire. Environmental Management 19: 591–600.CrossRefGoogle Scholar
  75. Rodríguez-Lozano, P., I. Verkaik, A. Maceda-Veiga, M. Monroy, A. de Sostoa, M. Rieradevall & N. Prat, 2016. A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish. Ecology and Evolution 6: 3299–3310.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Shearer, K. A., J. D. Stark, J. W. Hayes & R. G. Young, 2003. Relationships between drifting and benthic invertebrates in three New Zealand rivers: Implications for drift-feeding fish. New Zealand Journal of Marine and Freshwater Research 37: 809–820.CrossRefGoogle Scholar
  77. Sibley, P. K. & A. M. Gordon, 2010. Managing Riparian Forests: A Decision Support System. Sustainable Forest Management Network, Edmonton: 42.Google Scholar
  78. Sibley, P. K., D. P. Kreutzweiser, B. J. Naylor, J. S. Richardson & A. M. Gordon, 2012. Emulation of natural disturbance (END) for riparian forest management: synthesis and recommendations. Freshwater Science 31: 258–264.CrossRefGoogle Scholar
  79. Sidle, R. C., Y. Tsuboyama, S. Noguchi, I. Hosoda, M. Fujieda & T. Shimizu, 2000. Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological Processes 14: 369–385.CrossRefGoogle Scholar
  80. Stone, M. K. & J. B. Wallace, 1998. Long-term recovery of a mountain stream from clear-cut logging: the effects of forest succession on benthic invertebrate community structure. Freshwater Biology 39: 151–169.CrossRefGoogle Scholar
  81. Stout, B. M., E. F. Benfield & J. R. Webster, 1993. Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshwater Biology 29: 59–69.CrossRefGoogle Scholar
  82. Studinski, J. M. & K. J. Hartman, 2015. The effects of riparian logging on terrestrial invertebrate inputs into forested headwater streams. Hydrobiologia 743: 189–198.CrossRefGoogle Scholar
  83. Sweeney, B. W., 1993. Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proceedings of the Academy of Natual Sciences of Philadelphia 144: 291–340.Google Scholar
  84. Vannote, R. L., W. G. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  85. Vaz, P. G., S. Dias, P. Pinto, E. C. Merten, C. T. Robinson, D. R. Warren & F. C. Rego, 2014. Effects of burn status and conditioning on colonization of wood by stream macroinvertebrates. Freshwater Science 33: 832–846.CrossRefGoogle Scholar
  86. Verkaik, I., M. Rieradevall, S. D. Cooper, J. M. Melack, T. L. Dudley & N. Prat, 2013. Fire as a disturbance in Mediterranean climate streams. Hydriobiologia 719: 353–382.CrossRefGoogle Scholar
  87. Verkaik, I., M. Vila-Escale, M. Rieradevall, C. V. Baxter, P. S. Lake, G. W. Minshall, P. Reich & N. Prat, 2015. Stream macroinvertebrate community responses to fire: are they the same in different fire-prone biogeographic regions? Freshwater Science 34: 1527–1541.CrossRefGoogle Scholar
  88. Wallace, J. B. & M. E. Gurtz, 1986. Response of Baetis mayflies (Ephemeroptera) to catchment logging. The American Midland Naturalist Journal 115: 25–41.CrossRefGoogle Scholar
  89. Wallace, J., S. Eggert, J. Meyer & J. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.CrossRefGoogle Scholar
  90. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.CrossRefGoogle Scholar
  91. Walton, A. O. E., S. R. Reice & R. W. Andrews, 1977. The effects of density, sediment particle size and velocity on drift of Acroneuria abnormis (Plecoptera). Oikos 28: 291–298.CrossRefGoogle Scholar
  92. Waters, T., 1972. The drift of stream insects. Annual Review of Entomology 17: 253–272.CrossRefGoogle Scholar
  93. Webster, J., S. Golladay, E. Benfield, J. Meyer, W. Swank, & J. Wallace, 1992. Catchment disturbance and stream response: an overview of stream research at Coweeta Hydrologic Laboratory. River conservation and Management 231–253, http://www.alces.ca/references/download/262/Catchment-Disturbance-and-Stream-Response-An-Overview-of-Stream-Research-at-Coweeta-Hydrologic-Laboratory.pdf.
  94. Webster, K. L., F. D. Beall, I. F. Creed & D. P. Kreutzweiser, 2015. Impacts and prognosis of natural resource development on water and wetlands in Canada’s boreal zone. Environmental Reviews 23: 78–131.CrossRefGoogle Scholar
  95. Williams, D. & H. B. Hynes, 1976. The recolonization mechanisms of stream benthos. Oikos 27: 265–272.CrossRefGoogle Scholar
  96. Wilson, M. K., W. H. Lowe & K. H. Nislow, 2014. What predicts the use by brook trout (Salvelinus fontinalis) of terrestrial invertebrate subsidies in headwater streams? Freshwater Biology 59: 187–199.CrossRefGoogle Scholar
  97. Wipfli, M. S., 1997. Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 54: 1259–1269.CrossRefGoogle Scholar
  98. Wipfli, M. S. & D. P. Gregovich, 2002. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshwater Biology 47: 957–969.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jordan Musetta-Lambert
    • 1
    Email author
  • David Kreutzweiser
    • 2
  • Paul Sibley
    • 1
  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Natural Resources CanadaCanadian Forest ServiceSault Ste. MarieCanada

Personalised recommendations