Advertisement

Flow gradient drives morphological divergence in an Amazon pelagic stream fish

  • Thiago Fonseca de BarrosEmail author
  • José Louvise
  • Érica Pellegrini Caramaschi
Primary Research Paper

Abstract

Body shape and size variations are common in stream fishes, and morphological differences can have either a genetic or non-genetic basis. Flow has been indicated as one of the causes of intraspecific variation, and shifts in stream-fish body morphology are related to swimming performance and to individual fitness. Although populations in lotic versus lentic habitats have been compared, the effects of a flow gradient on fish shape are little studied. We tested differences in size, body shape and caudal-peduncle morphology of a pelagic fish that inhabits streams with different velocities in two basins, using geometric morphometrics to evaluate shifts in body morphology. Fish from lower-flow velocities had larger bodies that were deeper posteriorly; fish from higher-flow velocities were smaller and more streamlined. Shape variation among specimens was significantly influenced by the local velocity, with similar responses in fish body shape in the different basins. We showed that selective pressures generated by flow velocities affect fish shape in the same way in both basins. Fish body size, shape and caudal-peduncle morphology affect swimming performance, which could influence the energy costs for survival. Our results with a small pelagic characid help to elucidate questions on morphological predictions for fishes across flow regimes.

Keywords

Geometric morphometrics Natural variation Steady swimming Ecomorphology paradigm 

Notes

Acknowledgements

The authors would like to thank Dr. Henrique Lazzarotto and MSc. Ana Clara Franco, who reviewed earlier versions of this manuscript; Janet Reid, who reviewed the final English version of the manuscript; and, to three anonymous reviewers who made valuable contributions to final revision of the manuscript. To Ane Mello and Heloisa Barreto for their assistance in laboratory work; to Rafael de Oliveira Marques, the researchers and students from the Laboratório de Ecologia de Peixes—UFRJ, the Laboratório de Limnologia—UFRJ and the Laboratório de Ecologia Aquática—NUPEM/UFRJ for their help during fieldwork; and to Ronilson Picanço and Mineração Rio do Norte (MRN) employees for logistical help with fieldwork. We are grateful to Dr. Cristiano Moreira, curator of fish collection of the Museu Nacional do Rio de Janeiro—UFRJ, for examination and deposition of voucher specimens in the Ichthyological Collection, and also to describe H. ericae as a homage to EPC. We also thank Dr. Brian Sidlauskas from the Oregon State University, for the encouragement to publish the data, preliminarily presented as a poster during the XXI EBI. This study is dedicated to the people of Moura, Água Fria and Boa Nova Communities (Oriximiná, Pará, Brazil).

Supplementary material

10750_2019_3902_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3447 kb)

References

  1. Archer, S. D. & I. A. Johnston, 1989. Kinematics of labriform and subcarangiform swimming in the antarctic fish Notothenia neglecta. Journal of Experimental Biology 143: 195–210.Google Scholar
  2. Araújo, M. S., Perez, S. I., Magazoni, M. J. C., & Petry, A. C. (2014). Body size and allometric shape variation inthe molly Poecilia vivipara along a gradient of salinity and predation. BMC Evolutionary Biology 14: 251. http://www.biomedcentral.com/1471-2148/14/251 .CrossRefGoogle Scholar
  3. Blob, R. W. & G. Rivera, 2008. Going with the flow: ecomorphological variation across aquatic flow regimes: an introduction to the symposium. Integrative and Comparative Biology 48: 699–701.CrossRefGoogle Scholar
  4. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, New York, Geometry and Biology.Google Scholar
  5. Brasil, 2000. Lei no. 9.985/2000, institui o Sistema Nacional de Unidades de Conservação da Natureza (SNUC).Google Scholar
  6. Burns, J. G., P. Di Nardo, & F. H. Rodd, (2009). The role of predation in variation in body shape in guppies Poecilia reticulata: a comparison of field and common garden phenotypes. Journal of Fish Biology 75: 1144–1157.  https://doi.org/10.1111/j.1095-8649.2009.02314.x.CrossRefPubMedGoogle Scholar
  7. Casatti, L. & R. M. C. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214.CrossRefGoogle Scholar
  8. Castro, M. A., H. A. Santos, F. A. C. Sampaio & P. S. Pompeu, 2010. Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae). Zoologia 27: 939–944.CrossRefGoogle Scholar
  9. Cureton II, J. C. & R. E. Broughton, 2014. Rapid morphological divergence of a stream fish in response to changes in water flow. Biology Letters 10: 20140352.CrossRefGoogle Scholar
  10. Eschmeyer, W. N., R. Fricke & R. van der Laan (eds), 2017. Catalog of fishes: genera, species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version accessed 15 October 2017.
  11. Faradonbe, M. Z., S. Eagderi & M. Moradi, 2015. Patterns of body shape variation in Capoeta gracilis (Pisces: Cyprinidae) in relation to environmental variables in Sefidrud River basin, Iran. Journal of Applied Biological Sciences 9: 36–42.Google Scholar
  12. Foster, K., L. Bower & K. Piller, 2015. Getting in shape: habitat-based morphological divergence for two sympatric fishes. Biological Journal of the Linnean Society 114: 152–162.CrossRefGoogle Scholar
  13. Fox, J. & S. Weisberg. 2011. An R Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.
  14. Franssen, N. R., 2011. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evolutionary Applications 4: 791–804.CrossRefGoogle Scholar
  15. Franssen, N. R., L. K. Stewart & J. F. Schaefer, 2013. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecology and Evolution 3: 4648–4657.CrossRefGoogle Scholar
  16. Froese, R. & D. Pauly (eds), 2017. FishBase. Accessed on October 15, 2017. http://www.fishbase.org/.
  17. Gaither, M. R., M. A. Bernal, R. R. Coleman, B. W. Bowen, S. A. Jones, W. B. Simison & L. A. Rocha, 2015. Genomic signatures of geographic isolation and natural selection in coral reef fishes. Molecular Ecology 24: 1543–1557.CrossRefGoogle Scholar
  18. García-Alzate, C. A., C. Román-Valencia & M. González, 2010. Morfogeometría de los peces del género Hyphessobrycon (Characiformes: Characidae), grupo heterorhabdus, en Venezuela. Revista de Biología Tropical 58: 801–811.PubMedGoogle Scholar
  19. Gatz Jr., A. J., 1979. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.Google Scholar
  20. Ghalambor, C. K., D. N. Reznick & J. A. Walker, 2004. Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). The American Naturalist 164: 38–50.CrossRefGoogle Scholar
  21. Gomes Jr., J. L. & L. R. Monteiro, 2007. Size and fecundity variation in populations of Poecilia vivipara Block & Schneider (Teleostei; Poeciliidae) inhabiting an environmental gradient. Journal of Fish Biology 71: 1799–1809.CrossRefGoogle Scholar
  22. Gomes Jr., J. L. & L. R. Monteiro, 2008. Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm. Biological Journal of the Linnean Society 93: 799–812.CrossRefGoogle Scholar
  23. Habel, K., R. Grasman, R. B. Gramacy, A. Stahel & D. C. Sterratt, 2015. Geometry: mesh generation and surface tesselation. R package version 0.3-6. https://CRAN.R-project.org/package=geometry.
  24. Jacobson, B., F. Dubois & P. R. Peres-Neto, 2017. Phenotype-dependent selection underlies patterns of sorting across habitats: the case of stream-fishes. Oikos 126: 1660–1671.CrossRefGoogle Scholar
  25. Keenleyside, M. H. A., 1979. Diversity and Adaptation in Fish Behavior. Springer Verlag, Berlin.CrossRefGoogle Scholar
  26. Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.CrossRefGoogle Scholar
  27. Langerhans, R. B., 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48: 750–768.CrossRefGoogle Scholar
  28. Langerhans, R. B. & T. J. DeWitt, 2004. Shared and unique features of evolutionary diversification. The American Naturalist 164: 335–349.CrossRefGoogle Scholar
  29. Langerhans, R. B., C. A. Layman, A. K. Langerhans & T. J. DeWitt, 2003. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society 80: 689–698.CrossRefGoogle Scholar
  30. Lauder, G. V. & P. G. A. Madden, 2006. Learning from fish: kinematics and experimental hydrodynamics for roboticists. International Journal of Automation and Computing 3: 325–335.CrossRefGoogle Scholar
  31. Lazzarotto, H., T. Barros, J. Louvise & E. P. Caramaschi, 2017. Morphological variation among populations of Hemigrammus coeruleus (Characiformes: Characidae) in a Negro River tributary, Brazilian Amazon. Neotropical Ichthyology 15: e160152.CrossRefGoogle Scholar
  32. Liao, J. C., D. N. Beal, G. V. Lauder & M. S. Triantafyllou, 2003. Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569.CrossRefGoogle Scholar
  33. Lowe-McConnell, R. H., 1999. Estudos Ecológicos de Comunidades de Peixes Tropicais. EDUSP, São Paulo.Google Scholar
  34. Malato, G., V. R. Shervette, R. N. Amaya, J. V. Rivera, F. N. Salazar, P. C. Delgado, K. C. Karpan & W. E. Aguirre, 2017. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes. PLoS ONE 12: e0179432.CrossRefGoogle Scholar
  35. Marques, D. A., K. Lucek, J. I. Meier, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2016. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genetics 12: e1005887.CrossRefGoogle Scholar
  36. Mendonça, F. P., W. E. Magnusson & J. Zuanon, 2005. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 2005: 751–764.CrossRefGoogle Scholar
  37. Meyers, P. J. & M. C. Belk, 2014. Shape variation in a benthic stream fish across flow regimes. Hydrobiologia 738: 147–154.CrossRefGoogle Scholar
  38. Monteiro, L. R. & S. F. Reis, 1999. Princípios de Morfometria Geométrica. Editora Holos, Ribeirão Preto.Google Scholar
  39. Moreira, C. R. & F. C. T. Lima, 2017. Two new Hyphessobrycon (Characiformes: Characidae) species from Central Amazon basin, Brazil. Zootaxa 4318: 123–134.CrossRefGoogle Scholar
  40. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2015. vegan: Community Ecology Package. R package version 2.3-0. https://CRAN.R-project.org/package=vegan.
  41. Ohlberger, J., G. Staaks & F. Hölker, 2006. Swimming efficiency and the influence of morphology on swimming costs in fishes. Journal of Comparative Physiology B 176: 17–25.CrossRefGoogle Scholar
  42. Pettersson, L. B. & A. Hedenström, 2000. Energetics, cost reduction and functional consequences of fish morphology. Proceedings of the Royal Society of London B 267: 759–764.CrossRefGoogle Scholar
  43. Piggott, M. P., N. L. Chao & L. B. Beheregaray, 2011. Three fishes in one: cryptic species in an Amazonian floodplain forest specialist. Biological Journal of the Linnean Society 102: 391–403.CrossRefGoogle Scholar
  44. Price, T. D., A. Qvarnström & D. E. Irwin, 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London B 270: 1433–1440.CrossRefGoogle Scholar
  45. R Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  46. Restrepo-Escobar, N., J. C. Hurtado-Alarcón, N. J. Mancera-Rodríguez & E. J. Márquez, 2016. Variations of body geometry in Brycon henni (Teleostei: Characiformes, Bryconidae) in different rivers and streams. Journal of Fish Biology 89: 522–528.CrossRefGoogle Scholar
  47. Rohlf, F. J., 2011. TpsRegr, Version 1.38. Department of Ecology and Evolution, State University of New York, Stony Brook, NY. http://life.bio.sunysb.edu/morph/.
  48. Rohlf, F. J., 2015. TpsDig, Version 2.22. Department of Ecology and Evolution, State University of New York, Stony Brook, NY. http://life.bio.sunysb.edu/morph/.
  49. Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  50. Sampaio, F. A. C., P. S. Pompeu, H. A. Santos & R. L. Ferreira, 2012. Swimming performance of epigeal and hypogeal species of Characidae, with an emphasis on the troglobiotic Stygichthys typhlops Brittan & Böhlke, 1965. International Journal of Speleology 41: 9–16.CrossRefGoogle Scholar
  51. Santos, G. M. & E. J. G. Ferreira, 1999. Peixes da Bacia Amazônica. In Lowe-McConnell, R. H. (ed.), Estudos Ecológicos de Comunidades de Peixes Tropicais. EDUSP, São Paulo: 345–373.Google Scholar
  52. Schlichting, C. D. & M. Pigliucci, 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer, Sutherland, MA.Google Scholar
  53. Schlichting, C. D. & H. Smith, 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology 16: 189–211.CrossRefGoogle Scholar
  54. Senay, C., D. Boisclair & P. R. Peres-Neto, 2015. Habitat-based polymorphism is common in stream fishes. Journal of Animal Ecology 84: 219–227.CrossRefGoogle Scholar
  55. Sfakiotakis, M., D. M. Lane & J. B. C. Davies, 1999. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24: 237–252.CrossRefGoogle Scholar
  56. Sidlauskas, B., B. Chernoff & A. Machado-Allison, 2006. Geographic and environmental variation in Bryconops sp. cf. melanurus (Ostariophysi: Characidae) from the Brazilian Pantanal. Ichthyological Research 53: 24–33.CrossRefGoogle Scholar
  57. Sidlauskas, B. L., J. H. Mol & R. P. Vari, 2011. Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zoological Journal of the Linnean Society 162: 103–130.CrossRefGoogle Scholar
  58. Sioli, H., 1985. Amazônia: Fundamentos da Ecologia da Maior Região de Florestas Tropicais. Vozes, Petrópolis.Google Scholar
  59. Soares, B. E., R. O. Marques, T. Barros, D. C. O. Rosa, N. C. Silva, J. C. Silva & E. P. Caramaschi, 2015. Lago Sapucuá (Oriximiná, PA): os peixes e o homem em área de mineração. Boletim da Sociedade Brasileira de Ictiologia 116: 25–30.Google Scholar
  60. Sutherland, W. J., R. P. Freckleton, H. C. J. Godfray, S. R. Beissinger, T. Benton, D. D. Cameron, Y. Carmel, D. A. Coomes, T. Coulson, M. C. Emmerson, R. S. Hails, G. C. Hays, D. J. Hodgson, M. J. Hutchings, D. Johnson, J. P. G. Jones, M. J. Keeling, H. Kokko, W. E. Kunin, X. Lambin, O. T. Lewis, Y. Malhi, N. Mieszkowska, E. J. Milner-Gulland, K. Norris, A. B. Phillimore, D. W. Purves, J. M. Reid, D. C. Reuman, K. Thompson, J. M. J. Travis, L. A. Turnbull, D. A. Wardle & T. Wiegand, 2013. Identification of 100 fundamental ecological questions. Journal of Ecology 101: 58–67.CrossRefGoogle Scholar
  61. Torres-Dowdall, J., C. A. Handelsman, D. N. Reznick & C. K. Ghalambor, 2012. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution 66: 3432–3443.CrossRefGoogle Scholar
  62. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.CrossRefGoogle Scholar
  63. Walsh, M. R. & D. N. Reznick, 2008. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America 105: 594–599.CrossRefGoogle Scholar
  64. Webb, P. W. (1982). Locomotor patterns in the evolution of actinopterygian fishes. American Zoologist, 22, 329–342.CrossRefGoogle Scholar
  65. Webb, P. W. & D. Weihs, 1986. Functional locomotor morphology of early life history stages of fishes. Transactions of the American Fisheries Society 115: 115–127.CrossRefGoogle Scholar
  66. Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, New York and London.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thiago Fonseca de Barros
    • 1
    • 2
    Email author
  • José Louvise
    • 3
  • Érica Pellegrini Caramaschi
    • 1
    • 2
  1. 1.Laboratório de Ecologia de Peixes, Departamento de Ecologia, Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ), CCSRio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em Ecologia (PPGE), Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ), CCSRio de JaneiroBrazil
  3. 3.Faculdade de Tecnologia Intensiva- FATECIFortalezaBrazil

Personalised recommendations