Advertisement

Ongoing localized extinctions of stream-dwelling white-spotted charr populations in small dammed-off habitats of Hokkaido Island, Japan

  • Kentaro MoritaEmail author
  • Genki Sahashi
  • Masaki Miya
  • Shouko Kamada
  • Takashi Kanbe
  • Hitoshi Araki
CHARR III

Abstract

Habitat fragmentation caused by damming can greatly reduce the population viability of aquatic organisms, with smaller fragmented populations at higher risk of extinction due to increased demographic, genetic, and environmental stochasticity. However, empirical evidence demonstrating that smaller natural populations are more vulnerable to extinction is limited. We studied the vulnerability to extinction of white-spotted charr (Salvelinus leucomaenis) populations in 30 dammed-off streams in Oshima Peninsula, southwestern Hokkaido Island, Japan, by comparing the incidence of charr populations in streams between 1999 and 2014. Using electrofishing and environmental DNA surveys, we identified three localized extinctions, with the probability of extinction increasing with decreasing watershed area (our surrogate for habitat size). We also found a new population in one dammed-off stream in which white-spotted charr were previously unknown, after installation of a fish ladder, indicating the capacity of white-spotted charr to recolonize reconnected habitat in a short period. Our results suggest that localized extinction of white-spotted charr in small dammed-off streams is ongoing, but that appropriate fish migration corridors can reduce localized extinction risk and increase the probability of species persistence.

Keywords

eDNA Environmental stochasticity Isolation Population size Salmonid 

Notes

Acknowledgements

We thank Steve O’Shea for editing a draft of this manuscript and Yukuto Sato for MiFish pipeline analysis. The electrofishing surveys were made possible by sampling permits issued by the Governor of Hokkaido. This study was supported by the Japan Society for the Promotion of Science KAKENHI Grant Numbers JP25450293(KM), 17H03623(HA), and in part by the Environment Research and Technology Development Fund (4-1602) of the Ministry of the Environment, Japan. MM was supported by JST CREST Grant Number JPMJCR13A2, Japan.

Supplementary material

10750_2019_3891_MOESM1_ESM.xlsx (15 kb)
Supplementary material 1 (XLSX 14 kb)

References

  1. Anderson, J. H., P. L. Faulds, K. D. Burton, M. E. Koehler, W. I. Atlas & T. P. Quinn, 2015. Dispersal and productivity of Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon colonizing newly accessible habitat. Canadian Journal of Fisheries and Aquatic Sciences 72: 454–465.CrossRefGoogle Scholar
  2. Baldigo, B. P., L. A. Sporn, S. D. George & J. A. Ball, 2017. Efficacy of environmental DNA to detect and quantify brook trout populations in headwater streams of the Adirondack Mountains, New York. Transactions of the American Fisheries Society 146: 99–111.CrossRefGoogle Scholar
  3. Baxter, C. V., K. D. Fausch, M. Murakami & P. L. Chapman, 2007. Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance. Oecologia 153: 461–470.CrossRefGoogle Scholar
  4. Chapman, B. B., K. Hulthén, J. Brodersen, P. A. Nilsson, C. Skov, L. A. Hansson & C. Brönmark, 2012. Partial migration in fishes: causes and consequences. Journal of Fish Biology 81: 456–478.CrossRefGoogle Scholar
  5. Fausch, K. D., B. E. Rieman, J. B. Dunham, M. K. Young & D. P. Peterson, 2009. Invasion versus Isolation: trade-offs in managing native salmonids with barriers to upstream movement. Conservation Biology 23: 859–870.CrossRefGoogle Scholar
  6. Ferraz, G., G. J. Russell, P. C. Stouffer, R. O. Bierregaard, S. L. Pimm & T. E. Lovejoy, 2003. Rates of species loss from Amazonian forest fragments. Proceedings of the National Academy of Sciences United States of America 100: 14069–14073.CrossRefGoogle Scholar
  7. Fukushima, M., S. Kameyama, M. Kaneko, K. Nakao & E. A. Ashley, 2007. Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshwater Biology 52: 1511–1524.CrossRefGoogle Scholar
  8. Gibson, L., A. J. Lynam, C. J. A. Bradshaw, F. He, D. P. Bickford, D. S. Woodruff, S. Bumrungsri & W. F. Laurance, 2013. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341: 1508–1510.CrossRefGoogle Scholar
  9. Griffiths, A. M., J. S. Ellis, D. Clifton-Dey, G. Machado-Schiaffino, D. Bright, E. Garcia-Vazquez & J. R. Stevens, 2011. Restoration versus recolonisation: the origin of Atlantic salmon (Salmo salar L.) currently in the River Thames. Biological Conservation 144: 2733–2738.CrossRefGoogle Scholar
  10. Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M. Ewers, B. L. Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R. Margules, B. A. Melbourne, A. O. Nicholls, J. L. Orrock, Dan-Xia Song & J. R. Townshend, 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.CrossRefGoogle Scholar
  11. Kikuchi, S. & M. Inoue, 2014. Population fragmentation of a stream-resident salmonid by dams: downstream progress of extinctions from headwaters. Ecology and Civil Engineering 17: 17–28.CrossRefGoogle Scholar
  12. Lande, R., 1998. Anthropogenic, ecological and genetic factors in extinction and conservation. Researches on Population Ecology 40: 259–269.CrossRefGoogle Scholar
  13. Martin, A. D., M. K. Quinn & J. H. Park, 2011. MCMCpack: Markov chain Monte Carlo in R. Journal of Statistical Software 42: 1–21.CrossRefGoogle Scholar
  14. Mizumoto, H., H. Urabe, T. Kanbe, M. Fukushima & H. Araki, 2018. Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid. Limnology 19: 219–227.CrossRefGoogle Scholar
  15. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh & W. Iwasaki, 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2: 150088.CrossRefGoogle Scholar
  16. Morita, K., 2018. Assessing the long-term causal effect of trout invasion on a native charr. Ecological Indicators 87: 189–192.CrossRefGoogle Scholar
  17. Morita, K. & S. Yamamoto, 2002. Effects of habitat fragmentation by damming on the persistence of stream-dwelling charr populations. Conservation Biology 16: 1318–1323.CrossRefGoogle Scholar
  18. Morita, K. & A. Yokota, 2002. Population viability of stream-resident salmonids after habitat fragmentation: a case study with white-spotted charr (Salvelinus leucomaenis) by an individual based model. Ecological Modelling 155: 85–94.CrossRefGoogle Scholar
  19. Morita, K., J. Tsuboi & H. Matsuda, 2004. The impact of exotic trout on native charr in a Japanese stream. Journal of Applied Ecology 41: 962–972.CrossRefGoogle Scholar
  20. Morita, K., S. H. Morita & S. Yamamoto, 2009. Effects of habitat fragmentation by damming on salmonid fishes: lessons from white-spotted charr in Japan. Ecological Research 24: 711–722.CrossRefGoogle Scholar
  21. Nathan, L. R., A. A. Smith, A. B. Welsh & J. C. Vokoun, 2018. Are culvert assessment scores an indicator of Brook Trout Salvelinus fontinalis population fragmentation? Ecological Indicators 84: 208–2017.CrossRefGoogle Scholar
  22. Perkin, J. S. & K. B. Gido, 2011. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries 36: 371–383.CrossRefGoogle Scholar
  23. Perkin, J. S., K. B. Gido, A. R. Cooper, T. F. Turner, M. J. Osborne, E. R. Johnson & K. B. Mayes, 2015. Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs 85: 73–92.CrossRefGoogle Scholar
  24. Pess, G. R., T. P. Quinn, S. R. Gephard & R. Saunders, 2014. Re-colonization of Atlantic and Pacific rivers by anadromous fishes: linkages between life history and the benefits of barrier removal. Reviews in Fish Biology and Fisheries 24: 881–900.CrossRefGoogle Scholar
  25. Pépino, M., M. A. Rodríguez & P. Magnan, 2012. Impacts of highway crossings on density of brook charr in streams. Journal of Applied Ecology 49: 395–403.CrossRefGoogle Scholar
  26. Sahashi, G. & K. Morita, 2016. Potential threat of introduced rainbow trout Oncorhynchus mykiss to native salmonids in the western part of Hokkaido, Japan. Ichthyological Research 63: 540–544.CrossRefGoogle Scholar
  27. Sato, Y., M. Miya, T. Fukunaga, T. Sado & W. Iwasaki, 2018. MitoFish and MiFish pipeline: a mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Molecular Biology and Evolution 35: 1553–1555.CrossRefGoogle Scholar
  28. Shaffer, M. L., 1981. Minimum population sizes for species conservation. BioScience 31: 131–134.CrossRefGoogle Scholar
  29. Shimoda, K. & H. Kawamula, 2014. Distribution of masu salmon red in the Doudoromappu River, a tributary of the Abashiri River, before and after the construction of fish ways (Short Paper). Scientific Report of Hokkaido Fisheries Research Institute 85: 41–46.Google Scholar
  30. Stouffer, P. C., C. Strong & L. N. Naka, 2009. Twenty years of understorey bird extinctions from Amazonian rain forest fragments: consistent trends and landscape-mediated dynamics. Diversity and Distributions 15: 88–97.CrossRefGoogle Scholar
  31. Tillotson, M. D., R. P. Kelly, J. J. Duda, M. Hoy, J. Kralj & T. P. Quinn, 2018. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation 220: 1–11.CrossRefGoogle Scholar
  32. Wilde, G. R. & A. C. Urbanczyk, 2013. Relationship between river fragment length and persistence of two imperiled Great Plains cyprinids. Journal of Freshwater Ecology 28: 445–451.CrossRefGoogle Scholar
  33. Yamamoto, S., K. Morita, I. Koizumi & K. Maekawa, 2004. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conservation Genetics 5: 529–538.CrossRefGoogle Scholar
  34. Yamanaka, H. & T. Minamoto, 2016. The use of environmental DNA of fishes as an efficient method of determining habitat connectivity. Ecological Indicators 62: 147–153.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hokkaido National Fisheries Research InstituteJapan Fisheries Research and Education AgencySapporoJapan
  2. 2.Department of Ecology and Environmental SciencesNatural History Museum and InstituteChibaJapan
  3. 3.Research Faculty of AgricultureHokkaido UniversitySapporoJapan

Personalised recommendations