Long-term suppression of the Lake Trout (Salvelinus namaycush) population in Lake Pend Oreille, Idaho

  • Michael J. HansenEmail author
  • Matthew P. Corsi
  • Andrew M. Dux


A simulation model of lake trout Salvelinus namaycush (Walbaum 1792) population dynamics in Lake Pend Oreille, Idaho, was used to estimate (1) the optimal allocation of effort among gillnet mesh sizes that minimizes abundance in the shortest time; (2) the number of years needed to suppress the population to 90% of peak abundance; and (3) once suppressed, how much effort could be reduced to sustain abundance indefinitely. A density-dependent stochastic simulation model was parameterized from data in 2006–2016, including parameter uncertainty and implementation error. Time to suppression could be reduced by using more large-mesh gillnet than was used during 2007–2016. Continued fishing at the peak level of total gillnetting effort, but using an optimal effort allocation among meshes, would suppress abundance to the target level within 7–13 years. Once suppressed, gillnet effort could be reduced 76–86% (157,000 m, 95% CI 116,000–199,000 m) to sustain abundance at the target level. Our findings suggest that time to suppression of lake trout populations in other systems may be able to be reduced by optimizing gillnet effort allocation among mesh sizes, and that total effort can be greatly reduced to sustain abundance at the reduced level thereafter.


Lake trout Bull trout Fishing Predation 



Hickey Brothers Research, LLC, personnel carried out trap netting and gillnetting. Nancy Nate provided database assistance to the senior author. The U.S. Geological Survey provided funding for the senior author’s salary and travel. Avista Corporation and the U.S. Department of Energy, Bonneville Power Administration provided funding for the lake trout suppression program. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


  1. Allen, M. S., R. N. M. Ahrens, M. J. Hansen & R. Arlinghaus, 2013. Dynamic angling effort influences the value of minimum-length limits to prevent recruitment overfishing. Fisheries Management and Ecology 20(2–3): 247–257.CrossRefGoogle Scholar
  2. Bowles, E. C., V. L. Ellis, D. Hatch, & D. Irving. 1987. Kokanee stock status and contribution of Cabinet Gorge Hatchery, Lake Pend Oreille, Idaho, Annual Progress Report FY 1986. Idaho Department of Fish and Game, Agreement No. DE-AI79-85BP22493, Project 85-339, Boise, Idaho.Google Scholar
  3. Bowles, E. C., B. E. Rieman, G. R. Mauser, & D. H. Bennett. 1991. Effects of introductions of Mysis relicta on fisheries in northern Idaho. In T. P. Nesler & E. P. Bergersen (eds), Mysids in fisheries: hard lessons from headlong introductions. American Fisheries Society Symposium 9, Bethesda, Maryland: 65–74.Google Scholar
  4. Crossman, E. J., 1995. Introduction of the lake trout (Salvelinus namaycush) in areas outside its native distribution: a review. Journal of Great Lakes Research 21(Supplement 1): 17–29.CrossRefGoogle Scholar
  5. Donald, D. B. & D. J. Alger, 1993. Geographic distribution, species displacement, and niche overlap for lake trout and bull trout in mountain lakes. Canadian Journal of Zoology 71: 238–247.CrossRefGoogle Scholar
  6. Dux, A. M., M. J. Hansen, M. P. Corsi, N. C. Wahl, J. P. Fredericks, C. E. Corsi, D. J. Schill, & N. J. Horner. this issue. Effectiveness of Lake Trout (Salvelinus namaycush) Suppression in Lake Pend Oreille, Idaho: 2006–2016. Hydrobiologia, this issue.Google Scholar
  7. Dux, A. M., C. S. Guy & W. A. Fredenberg, 2011. Spatiotemporal distribution and population characteristics of a nonnative lake trout population, with implications for suppression. North American Journal of Fisheries Management 31: 187–196.CrossRefGoogle Scholar
  8. Eschmeyer, P. H., 1957. The near extinction of lake trout in Lake Michigan. Transactions of the American Fisheries Society 85: 102–119.CrossRefGoogle Scholar
  9. Fredenberg, W., 2002. Further evidence that lake trout displace bull trout in mountain lakes. Intermountain Journal of Sciences 8: 143–152.Google Scholar
  10. Fredenberg, C. R., C. C. Muhlfeld, C. S. Guy, V. S. D’Angelo, C. C. Downs & J. M. Syslo, 2017. Suppression of invasive Lake Trout in an isolated backcountry lake in Glacier National Park. Fisheries Management and Ecology 24: 33–48.CrossRefGoogle Scholar
  11. Guy, C. S., T. E. McMahon, W. A. Fredenberg, C. J. Smith, D. W. Garfield & B. S. Cox, 2011. Diet overlap of top-level predators in recent sympatry: Bull Trout and nonnative Lake Trout. Journal of Fish and Wildlife Management 2: 183–189.CrossRefGoogle Scholar
  12. Haddon, M., 2001. Modelling and quantitative methods in fisheries. Chapman & Hall/CRC, Boca Raton.Google Scholar
  13. Hamley, J. H., 1975. Review of gillnet selectivity. Journal of the Fisheries Board of Canada 32: 1943–1969.CrossRefGoogle Scholar
  14. Hansen, M. J., 1999. Lake trout in the Great Lakes: basin wide stock collapse and binational restoration. In Taylor, W. W. & C. P. Ferreri (eds), Great Lakes Fishery Policy and Management: A Binational Perspective. Michigan State University Press, East Lansing: 417–453.Google Scholar
  15. Hansen, M. J., C. P. Madenjian, T. E. Helser & J. H. Selgeby, 1997. Gillnet selectivity of lake trout (Salvelinus namaycush) in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 54: 2483–2490.CrossRefGoogle Scholar
  16. Hansen, M. J., M. Liter, S. Cameron, & N. Horner. 2007. Mark-recapture study of lake trout using large trap nets in Lake Pend Oreille. Idaho Department of Fish and Game, Fishery Research Report 07–19, Boise, Idaho.Google Scholar
  17. Hansen, M. J., N. J. Horner, M. Liter, M. P. Peterson & M. A. Maiolie, 2008. Dynamics of an increasing lake trout population in Lake Pend Oreille, Idaho, USA. North American Journal of Fisheries Management 28: 1160–1171.CrossRefGoogle Scholar
  18. Hansen, M. J., D. Schill, J. Fredericks & A. Dux, 2010. Salmonid predator-prey dynamics in Lake Pend Oreille, Idaho, USA. Hydrobiologia 650: 85–100.CrossRefGoogle Scholar
  19. Hansen, M. J., B. H. Hansen & D. A. Beauchamp, 2016. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America. Hydrobiologia 783: 317–334.CrossRefGoogle Scholar
  20. Healey, M. C., 1978. The dynamics of exploited lake trout populations and implications for management. Journal of Wildlife Management 42: 307–328.CrossRefGoogle Scholar
  21. Helser, T. E., R. E. Condrey & J. P. Geaghan, 1991. A new method of estimating gillnet selectivity, with an example for spotted seatrout, Cynocion nebulosus. Canadian Journal of Fisheries and Aquatic Sciences 48: 487–492.CrossRefGoogle Scholar
  22. Helser, T. E., J. P. Geaghan & R. E. Condrey, 1994. Estimating size composition and associated variances of a fish population from gillnet selectivity, with an example for spotted seatrout (Cynocion nebulosus). Fisheries Research 19: 65–86.CrossRefGoogle Scholar
  23. Hoelscher, B., 1992. Pend Oreille Lake Fishery Assessment 1951 to 1989. Idaho Department of Health and Welfare, Division of Environmental Quality Community Programs, Boise, Idaho.Google Scholar
  24. Hutchings, J. A., 2000. Collapse and recovery of marine fishes. Nature 46: 882–885.CrossRefGoogle Scholar
  25. Hutchings, J. A., 2001a. Conservation biology of marine fishes: perceptions and caveats regarding assignment of extinction risk. Canadian Journal of Fisheries and Aquatic Sciences 58: 108–121.Google Scholar
  26. Hutchings, J. A., 2001b. Influence of population decline, fishing, and spawner variability on the recovery of marine fishes. Journal of Fish Biology 59: 306–322.CrossRefGoogle Scholar
  27. Hutchings, J. A. & J. D. Reynolds, 2001. Marine fish population collapses: consequences for recovery and extinction risk. BioScience 54(4): 297–309.CrossRefGoogle Scholar
  28. Irwin, B. J., M. J. Wilberg, J. R. Bence, & M. L. Jones, 2008. Evaluating alternative harvest policies for yellow perch in Lake Michigan. Fisheries Research 94: 267–281.CrossRefGoogle Scholar
  29. Johnson, L., 1976. Ecology of arctic populations of lake trout, Salvelinus namaycush, lake whitefish, Coregonus clupeaformis, Arctic char, S. alpinus, and associated species in unexploited lakes of the Canadian Northwest Territories. Journal of the Fisheries Research Board of Canada 33: 2459–2488.CrossRefGoogle Scholar
  30. Keleher, J. J., 1972. Great Slave Lake: effects of exploitation on the salmonid community. Journal of the Fisheries Research Board of Canada 29: 741–753.CrossRefGoogle Scholar
  31. Krueger, C. C. & M. P. Ebener, 2004. Rehabilitation of lake trout in the Great Lakes: past lessons and future challenges. In Gunn, J. M., R. J. Steedman & R. A. Ryder (eds), Boreal Shield Watersheds: Lake Trout Ecosystems in a Changing Environment. Lewis Publishers, Boca Raton: 37–56.Google Scholar
  32. Martin, N. V., & T. G. Northcote. 1991. Kootenay Lake: an inappropriate model for Mysis relicta introduction in north temperate lakes. In T. P. Nesler & E. P. Bergersen (eds), Mysids in fisheries: hard lessons from headlong introductions. American Fisheries Society Symposium 9, Bethesda, Maryland: 23–29.Google Scholar
  33. Martin, N. V. & C. H. Olver, 1980. The lake charr, Salvelinus namaycush. In Balon, E. (ed.), Charrs: salmonid fishes of the genus Salvelinus. Junk Publishers, The Hague: 205–277.Google Scholar
  34. Muir, A. M., C. C. Krueger & M. J. Hansen, 2012. Re-establishing lake trout in the Laurentian Great Lakes: the past, present, and future. In Taylor, W. W., A. J. Lynch & N. J. Leonard (eds), Great Lakes Fishery Policy and Management: A Binational Perspective, 2nd ed. Michigan State University Press, East Lansing: 533–588.Google Scholar
  35. Myers, R. A., 2002. Recruitment: understanding density-dependence in fish populations. In Hart, P. J. B. & J. D. Reynolds (eds), Handbook of Fish Biology and Fisheries, Vol. 1., Fish Biology Blackwell Publishing, Malden: 123–148.CrossRefGoogle Scholar
  36. Myers, R. A., K. G. Bowen & N. J. Barrowman, 1999. The maximum reproductive rate of fish at low population sizes. Canadian Journal of Fisheries and Aquatic Sciences 56: 2404–2419.Google Scholar
  37. Nieland, J. L., M. J. Hansen, M. J. Seider & J. J. Deroba, 2008. Modeling the sustainability of lake trout fisheries in eastern Wisconsin waters of Lake Superior. Fisheries Research 94: 304–314.CrossRefGoogle Scholar
  38. Olver, C. H., D. Nadeau & H. Fournier, 2004. The control of harvest in lake trout fisheries on Precambrian Shield lakes. In Gunn, J. M., R. J. Steedman & R. A. Ryder (eds), Boreal shield watersheds: lake trout ecosystems in a changing environment. Lewis Publishers, Boca Raton: 193–218.Google Scholar
  39. Pauly, D., 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. Journal du Conseil International pour l’Exploration de la Mer 39: 175–192.CrossRefGoogle Scholar
  40. Pope, J. G., 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. International Commission for the Northwest Atlantic Fisheries, Research Bulletin Number 9: 65–74.Google Scholar
  41. Punt, A. E., M. W. Dorn & M. A. Haltuch, 2008. Evaluation of threshold management strategies for groundfish off the US West Coast. Fisheries Research 94: 251–266.CrossRefGoogle Scholar
  42. Quinn II, T. J. & R. B. Deriso, 1999. Quantitative fish dynamics. Oxford University Press, New York.Google Scholar
  43. Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin 191 of the Fisheries Research Board of Canada, Ottawa, Canada.Google Scholar
  44. Rieman, B. E. 1977. Lake Pend Oreille limnological studies. Idaho Department of Fish and Game, Job Performance Report, Project F-53-R-12, Job IV-d, Boise, Idaho.Google Scholar
  45. Schueller, A. M., A. H. Fayram & M. J. Hansen, 2012. Simulated equilibrium walleye population density under static and dynamic recreational angling effort. North American Journal of Fisheries Management 32: 894–904.CrossRefGoogle Scholar
  46. Stafford, C. P., J. A. Stanford, F. R. Hauer & E. B. Brothers, 2002. Changes in lake trout growth associated with Mysis relicta establishment: a retrospective analysis using otoliths. Transactions of the American Fisheries Society 131: 994–1003.CrossRefGoogle Scholar
  47. Syslo, J. M., C. S. Guy, P. E. Bigelow, P. D. Doepke, B. D. Ertel & T. M. Koel, 2011. Response of non-native lake trout (Salvelinus namaycush) to 15 years of harvest in Yellowstone Lake, Yellowstone National Park. Canadian Journal of Fisheries and Aquatic Sciences 68: 2132–2145.CrossRefGoogle Scholar
  48. Syslo, J. M., C. S. Guy & B. S. Cox, 2013. Comparison of harvest scenarios for the cost-effective suppression of Lake Trout in Swan Lake, Montana. North American Journal of Fisheries Management 33: 1079–1090.CrossRefGoogle Scholar
  49. Vidergar, D. T. 2000. Population estimates, food habits and estimates of consumption of selected predatory fishes in Lake Pend Oreille, Idaho. Master’s thesis. University of Idaho, Moscow, Idaho.Google Scholar
  50. Wilberg, M. J., C. R. Bronte & M. J. Hansen, 2004. Fleet dynamics of the commercial lake trout fishery in Michigan waters of Lake Superior during 1929–1961. Journal of Great Lakes Research 30: 252–266.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2019

Authors and Affiliations

  • Michael J. Hansen
    • 1
    Email author
  • Matthew P. Corsi
    • 2
  • Andrew M. Dux
    • 2
  1. 1.U.S. Geological Survey, Great Lakes Science CenterHammond Bay Biological StationMillersburgUSA
  2. 2.Idaho Department of Fish and GameCoeur D’AleneUSA

Personalised recommendations