Advertisement

Siscowet lake charr (Salvelinus namaycush siscowet) visual foraging habitat in relation to daily and seasonal light cycles

  • Trevor D. KeylerEmail author
  • Bryan G. Matthias
  • Thomas R. Hrabik
CHARR III
  • 51 Downloads

Abstract

Using siscowet lake charr (Salvelinus namaycush siscowet) as an example organism, we modeled visual foraging habitat in relation to: (i) daily solar and lunar intensity, (ii) seasonal changes in maximum solar and lunar altitude, (iii) foraging for pelagic or benthic prey, and (iv) increased turbidity that may occur with climate change. Siscowet foraging success increased with light intensity and was higher for pelagic prey than benthic prey. Daily and seasonal siscowet foraging patterns were similar for benthic and pelagic prey types. Predicted day-time foraging depths were deepest in summer and shallowest in winter (range 172–233 m for pelagic prey and 210–283 m for benthic prey), and night-time foraging depths were deepest in winter and shallowest in summer (range 25–32 m for pelagic prey and 63–81 m for benthic prey). Within the Lake Superior basin, extreme precipitation events and associated sediment plumes can cause localized declines in light attenuation. Increases in turbidity associated with these sediment plumes can reduce predicted foraging depths by 65% and 80%, when compared to normal lake attenuation values. The model can be applied to predict how solar and lunar patterns influence foraging patterns in any aquatic organism that displays light-mediated behavior.

Keywords

Lake Superior Benthic Pelagic Solar Lunar Attenuation 

Notes

Acknowledgements

We would like to thank Aron Habte at the Renewable Resource Data Center for his help with locating and interpreting solar data from the National Solar Radiation Database. Additionally, we would like to thank Quinnlan Smith at the University of Minnesota Duluth for his dedication to this study.

Supplementary material

10750_2019_3888_MOESM1_ESM.pdf (123 kb)
Supplementary material 1 (PDF 123 kb)

References

  1. Adams, C. F., R. J. Foy, J. J. Kelley & K. O. Coyle, 2009. Seasonal changes in the diel vertical migration of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska. Environmental Biology of Fishes 86: 297.CrossRefGoogle Scholar
  2. Ahrens, R. N., C. J. Walters & V. Christensen, 2012. Foraging arena theory. Fish and Fisheries 13: 41–59.CrossRefGoogle Scholar
  3. Ahrenstorff, T. D., T. R. Hrabik, J. D. Stockwell, D. L. Yule & G. G. Sass, 2011. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior. Transactions of the American Fisheries Society 140: 1504–1520.CrossRefGoogle Scholar
  4. Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. K. Tank & F. Tagipour, 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres.  https://doi.org/10.1029/2005JD006290.CrossRefGoogle Scholar
  5. Anderson, E. D. & L. L. Smith Jr., 1971. Factors affecting abundance of lake herring (Coregonus artedii Lesueur) in western Lake Superior. Transactions of the American Fisheries Society 100: 691–707.CrossRefGoogle Scholar
  6. Anderson, E. R., 1954. Water loss investigations: Lake Hefner studies. U.S. Geological Survey Professional Paper 269: 71–119.Google Scholar
  7. Auer, M. T., N. A. Auer, N. R. Urban & T. Auer, 2013. Distribution of the amphipod Diporeia in Lake Superior: the ring of fire. Journal of Great Lakes Research 39: 33–46.CrossRefGoogle Scholar
  8. Austin, J. A. & J. Allen, 2011. Sensitivity of summer Lake Superior thermal structure to meteorological forcing. Limnology and Oceanography 56: 1141–1154.CrossRefGoogle Scholar
  9. Beauchamp, D. A., C. M. Baldwin, J. L. Vogel & C. P. Gubala, 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128–139.CrossRefGoogle Scholar
  10. Benoit, D., Y. Simard, J. Gagné, M. Geoffroy & L. Fortier, 2010. From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean. Polar Biology 33: 1505–1520.CrossRefGoogle Scholar
  11. Blaxter, J., 1975. Vision in fishes. Springer, US.Google Scholar
  12. Bohl, E., 1980. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44: 368–375.CrossRefGoogle Scholar
  13. Bolsenga, S. J., 1978. Photosynthetically active radiation transmittance through ice. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, Michigan.Google Scholar
  14. Boscarino, B. T., L. G. Rudstam, J. L. Eillenberger & R. O’Gorman, 2009. Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana. Aquatic Biology 5: 263–279.CrossRefGoogle Scholar
  15. Boscarino, B. T., L. G. Rudstam, J. Tirabassi, J. Janssen & E. R. Loew, 2010. Light effects on alewife-mysid interactions in Lake Ontario: a combined sensory physiology, behavioral, and spatial approach. Limnology and Oceanography 55: 2061–2072.CrossRefGoogle Scholar
  16. Brawn, V. M., 1960. Seasonal and diurnal vertical distribution of herring (Clupea harengus L.) in Passamaquoddy, Bay, NB. Journal of the Fisheries Board of Canada 17: 699–711.CrossRefGoogle Scholar
  17. Brierley, A. S., 2014. Diel vertical migration. Current Biology 24: R1074–R1076.PubMedCrossRefGoogle Scholar
  18. Clark, C. W. & D. A. Levy, 1988. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. The American Naturalist 131: 271–290.CrossRefGoogle Scholar
  19. Clarke, G. L. & R. H. Backus, 1964. Interrelations between the vertical migration of deep scattering layers, bioluminescence, and changes in daylight in the sea. Bulletin de l’Institut Oceanographique, Monaco 64: 1–36.Google Scholar
  20. Cooney, E. M., P. McKinney, R. Sterner, G. E. Small & E. C. Minor, 2018. Tale of two storms: impacts of extreme rain events on the biogeochemistry of Lake Superior. Journal of Geophysical Research: Biogeosciences 123: 1719–1731.Google Scholar
  21. Cramer, C. E., K. R. Lykke, J. T. Woodward & A. W. Smith, 2013. Precise measurement of lunar spectral irradiance at visible wavelengths. The Journal of Research of the National Institute of Standards and Technology 118: 396–402.PubMedCrossRefGoogle Scholar
  22. Czuba, C. R., J. D. Fallon & E. W. Kessler, 2012. Floods of June 2012 in northeastern Minnesota. U. S. Geological Survey Scientific Investigations Report 42: 5283.Google Scholar
  23. Dera, J. & D. Stramski, 1986. Maximum effects of sunlight focusing under a wind-disturbed sea surface. Oceanologia 23: 15–42.Google Scholar
  24. De Robertis, A., 2002. Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnology and Oceanography 47: 925–933.CrossRefGoogle Scholar
  25. De Robertis, A., C. H. Ryer, A. Veloza & R. D. Brodeur, 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60: 1517–1526.CrossRefGoogle Scholar
  26. Diffenbaugh, N. S., J. S. Pal, R. J. Trapp & F. Giorgi, 2005. Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences of the United States of America 102: 15774–15778.PubMedPubMedCentralCrossRefGoogle Scholar
  27. d’Orgeville, M., W. R. Peltier, A. R. Erler & J. Gula, 2014. Climate change impacts on Great Lakes Basin precipitation extremes. Journal of Geophysical Research: Atmospheres 119: 10–799.Google Scholar
  28. Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46–59.CrossRefGoogle Scholar
  29. Eggers, D. M., 1978. Limnetic feeding behavior of juvenile sockeye salmon in Lake Washington and predator avoidance. Limnology and Oceanography 23: 1114–1125.CrossRefGoogle Scholar
  30. Eiane, K., D. L. Aksnes, E. BagØien & S. Kaartvedt, 1999. Fish or jellies—a question of visibility? Limnology and Oceanography 44: 1352–1357.CrossRefGoogle Scholar
  31. Fraser, N. H. C. & N. B. Metcalfe, 1997. The costs of becoming nocturnal: feeding efficiency in relation to light intensity in juvenile Atlantic salmon. Functional Ecology 11: 385–391.CrossRefGoogle Scholar
  32. Gabriel, W. & B. Thomas, 1988. Vertical migration of zooplankton as an evolutionarily stable strategy. The American Naturalist 132: 199–216.CrossRefGoogle Scholar
  33. Gamble, A. E., T. R. Hrabik, J. D. Stockwell & D. L. Yule, 2011. Trophic connections in Lake Superior Part I: the offshore fish community. Journal of Great Lakes Research 37: 541–549.CrossRefGoogle Scholar
  34. Gliwicz, Z. M., 1986. A lunar cycle in zooplankton. Ecology 67: 883–897.CrossRefGoogle Scholar
  35. Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012a. Habitat use by fishes of Lake Superior. I. Diel patterns of habitat use in nearshore and offshore waters of the Apostle Islands region. Aquatic Ecosystem Health & Management 15: 333–354.CrossRefGoogle Scholar
  36. Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012b. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters. Aquatic Ecosystem Health & Management 15: 355–368.CrossRefGoogle Scholar
  37. Guthrie, D. M., W. R. A. Muntz & T. J. Pitcher, 1993. Role of vision in fish behaviour. In Pitcher, T. J. (ed.), Behaviour of Teleost Fishes. Chapman and Hall, London.Google Scholar
  38. Habermann, R., S. Moen, & E. Stykel, 2012. Superior Facts. Minnesota Sea Grant (pub. S25), Duluth, Minnesota.Google Scholar
  39. Hansen, A. G., D. A. Beauchamp & E. R. Schoen, 2013. Visual prey detection responses of piscivorous trout and salmon: effects of light, turbidity, and prey size. Transactions of the American Fisheries Society 142: 854–867.CrossRefGoogle Scholar
  40. Harrington, K. A., T. R. Hrabik & A. F. Mensinger, 2015. Visual sensitivity of deepwater fishes in Lake Superior. PloS ONE 10: e0116173.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Harvey, C. J., S. T. Schram & J. F. Kitchell, 2003. Trophic relationships among lean and siscowet lake trout in Lake Superior. Transactions of the American Fisheries Society 132: 219–228.CrossRefGoogle Scholar
  42. Helfman, G. S., 1981. The advantage to fishes of hovering in shade. Copeia 1981: 392–400.CrossRefGoogle Scholar
  43. Henson, B. L., D. T. Kraus, M. J. McMurtry & D. N. Ewert, 2010. Islands of Life: A Biodiversity and Conservation Atlas of the Great Lakes Islands. Nature Conservancy of Canada, Toronto.CrossRefGoogle Scholar
  44. Horns, W. H., C. R. Bronte, T. R. Busiahn, M. P. Ebener, R. L. Eshenroder, T. Gorenflo, N. Kmiecik, W. Mattes, J. W. Peck, M. Petzold & D. R. Schreiner, 2003. Fish-Community Objectives for Lake Superior. Great Lakes Fishery Commission, Ann Arbor.Google Scholar
  45. Hrabik, T. R., O. P. Jensen, S. J. D. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying predation risk. Canadian Journal of Fisheries and Aquatic Sciences 63: 2286–2295.CrossRefGoogle Scholar
  46. Hrabik, T. R., B. M. Roth & T. Ahrenstorff, 2014. Predation risk and prey fish vertical migration in Lake Superior: insights from an individual based model of siscowet (Salvelinus namaycush). Journal of Great Lakes Research 40: 730–738.CrossRefGoogle Scholar
  47. Huse, I. & J. C. Holm, 1993. Vertical distribution of Atlantic salmon (Salmo salar) as a function of illumination. Journal of Fish Biology 43: 147–156.CrossRefGoogle Scholar
  48. Isaac, E. J., T. R. Hrabik, J. D. Stockwell & A. E. Gamble, 2012. Prey selection by the Lake Superior fish community. Journal of Great Lakes Research 38: 326–335.CrossRefGoogle Scholar
  49. Jensen, O. P., T. R. Hrabik, S. J. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. II. Modeling trade-offs at an intermediate trophic level. Canadian Journal of Fisheries and Aquatic Sciences 63: 2296–2307.CrossRefGoogle Scholar
  50. Jerome, J. H., R. P. Bukata & J. E. Bruton, 1983. Spectral Attenuation and Irradiance in the Laurentian Great Lakes. Journal of Great Lakes Research 9: 60–68.CrossRefGoogle Scholar
  51. Jurvelius, J. & T. J. Marjomaki, 2008. Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? Freshwater Biology 53: 2287–2294.CrossRefGoogle Scholar
  52. Kaartvedt, S., 1996. Habitat preference during overwintering and timing of seasonal vertical migration of Calanus finmarchicus. Ophelia 44: 145–156.CrossRefGoogle Scholar
  53. Kahilainen, K. K., T. Malinen & H. Lehtonen, 2009. Polar light regime and piscivory govern diel vertical migrations of planktivorous fish and zooplankton in a subarctic lake. Ecology of Freshwater Fish 18: 481–490.CrossRefGoogle Scholar
  54. Keyler, T. D., T. R. Hrabik, C. L. Austin, O. T. Gorman & A. F. Mensinger, 2015. Foraging mechanisms of siscowet lake trout (Salvelinus namaycush siscowet) on pelagic prey. Journal of Great Lakes Research 41: 1162–1171.CrossRefGoogle Scholar
  55. Keyler, T. D., T. R. Hrabik, A. F. Mensinger, L. S. Rogers & O. T. Gorman, 2018. Effect of light intensity and substrate type on siscowet lake trout (Salvelinus namaycush siscowet) predation on deepwater sculpin (Myoxocephalus thompsonii). Manuscript submitted for publication.Google Scholar
  56. Kharin, V. V., F. W. Zwiers, X. Zhang & G. C. Hegerl, 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate 20: 1419–1444.CrossRefGoogle Scholar
  57. Lampert, W., 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3: 21–27.CrossRefGoogle Scholar
  58. Levy, D. A., 1990a. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Canadian Journal of Fisheries and Aquatic Sciences 47: 1755–1764.CrossRefGoogle Scholar
  59. Levy, D. A., 1990b. Sensory mechanism and selective advantage for diel vertical migration in juvenile sockeye salmon, Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 47: 1796–1802.CrossRefGoogle Scholar
  60. Loew, E. R. & W. N. McFarland, 1990. The underwater visual environment. In Douglas, R. & M. Djamgoz (eds), The Visual System of Fish. Springer, Dordrecht: 1–43.Google Scholar
  61. Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.CrossRefGoogle Scholar
  62. Mason, D. M. & E. V. Patrick, 1993. A model for the space–time dependence of feeding for pelagic fish populations. Transactions of the American Fisheries Society 122: 884–901.CrossRefGoogle Scholar
  63. Mazur, M. M. & D. A. Beauchamp, 2003. A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Environmental Biology of Fishes 67: 397–405.CrossRefGoogle Scholar
  64. McFarland, W. N., 1986. Light in the sea—correlations with behaviors of fishes and invertebrates. American Zoologist 26: 389–401.CrossRefGoogle Scholar
  65. Mehner, T., 2012. Diel vertical migration of freshwater fishes–proximate triggers, ultimate causes and research perspectives. Freshwater Biology 57: 1342–1359.CrossRefGoogle Scholar
  66. Mehner, T., P. Kasprzak & F. Hölker, 2007. Exploring ultimate hypotheses to predict diel vertical migrations in coregonid fish. Canadian Journal of Fisheries and Aquatic Sciences 64: 874–886.CrossRefGoogle Scholar
  67. Mekis, É. & L. A. Vincent, 2011. An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49: 163–177.CrossRefGoogle Scholar
  68. Melillo, J. M., T. T. Richmond, & G. Yohe, 2014. Climate change impacts in the United States. Third National Climate Assessment 52.Google Scholar
  69. Melnikov, V.N., K. P. Grudov, & A. Bituma, 1981. Analysis of diurnal vertical migrations of fish. Canadian Translation of Fisheries and Aquatic Sciences. Canada Institute for Seientific and Technical Information, National Research Council of Canada, Ottawa, Ontario.Google Scholar
  70. Miner, J. G. & R. A. Stein, 1996. Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97–103.CrossRefGoogle Scholar
  71. Minor, E. C., J. A. Austin, L. Sun, L. Gauer, R. C. Zimmerman & K. Mopper, 2016. Mixing effects on light exposure in a large-lake epilimnion; a preliminary dual-dye study. Limnology and Oceanography: Methods 14: 542–554.Google Scholar
  72. Minnesota Sea Grant, 2014. Lake Superior’s Natural Processes, htttp://www.seagrant.umn.edu./superior/.
  73. MODIS Today, n.d. MODIS Today— CIMSS/SSEC. http://ge.ssec.wisc.edu/modis-today/.
  74. Muir, A. M., M. J. Hansen, C. R. Bronte & C. C. Krueger, 2016. If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish and Fisheries 17: 1194–1207.CrossRefGoogle Scholar
  75. Muntz, W. R., 1990. Stimulus, Environment and Vision in Fishes. The Visual System of Fish. Springer, Dordrecht.Google Scholar
  76. Munz, F. W. & W. N. McFarland, 1977. Evolutionary adaptations of fishes to the photic environment. In Crescitelli, F. (ed.), The Visual System in Vertebrates. Springer, Berlin.Google Scholar
  77. Narver, D. W., 1970. Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. Journal of the Fisheries Board of Canada 27: 281–316.CrossRefGoogle Scholar
  78. Oceanic, National & Atmospheric Administration, 2012. Great Lakes Environmental Research Laboratory. About Our Great Lakes, Lake by Lake Profiles.Google Scholar
  79. National Weather Service, 2018. Major June Flooding in the Northland. NOAA’s National Weather Service, https://www.weather.gov/dlh/June15-17_2018flooding.
  80. Nevers, M. B. & R. L. Whitman, 2005. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Research 39: 5250–5260.PubMedCrossRefGoogle Scholar
  81. Nowinszky, L., S. Szabó, G. Tóth, I. Ekk & M. Kiss, 1979. The effect of the moon phases and of the intensity of polarized moonlight on the light-trap catches. Journal of Applied Entomology 88: 337–353.Google Scholar
  82. O’Brien, W. J., 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. Predation: direct and indirect impacts on aquatic communities. University Press of New England, Lebanon.Google Scholar
  83. Oliver, S. K., D. K. Branstrator, T. R. Hrabik, S. J. Guildford & R. E. Hecky, 2014. Nutrient excretion by crustacean zooplankton in the deep chlorophyll layer of Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 72: 390–399.CrossRefGoogle Scholar
  84. Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, & N. K. Dubash, 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.Google Scholar
  85. Petersen, J. H. & D. M. Gadomski, 1994. Light-mediated predation by northern squawfish on juvenile chinook salmon. Journal of Fish Biology 45: 227–242.CrossRefGoogle Scholar
  86. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
  87. Ringelberg, J., 1995. Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments. Journal of the Marine Biological Association of the United Kingdom 75: 15–25.CrossRefGoogle Scholar
  88. Roulet, N. T. & W. P. Adams, 1986. Spectral distribution of light under a subarctic winter lake cover. Hydrobiologia 134: 89–95.CrossRefGoogle Scholar
  89. Schenck, H., 1957. On the focusing of sunlight by ocean waves. Journal of the Optical Society of America 47: 653–657.CrossRefGoogle Scholar
  90. Scheuerell, M. D. & D. E. Schindler, 2003. Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84: 1713–1720.CrossRefGoogle Scholar
  91. Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  92. Scott, W. B. & E. J. Crossman, 1973. Freshwater fishes of Canada. Journal of the Fisheries Research Board of Canada 184: 966.Google Scholar
  93. Sitar, S. P., H. M. Morales, M. T. Mata, B. B. Bastar, D. M. Dupras, G. D. Kleaver & K. D. Rathbun, 2008. Survey of siscowet lake trout at their maximum depth in Lake Superior. Journal of Great Lakes Research 34: 276–286.CrossRefGoogle Scholar
  94. Staby, A. & D. L. Aksnes, 2011. Follow the light—diurnal and seasonal variations in vertical distribution of the mesopelagic fish Maurolicus muelleri. Marine Ecology Progress Series 422: 265–273.CrossRefGoogle Scholar
  95. Stockwell, J. D., D. L. Yule, O. T. Gorman, E. J. Isaac & S. A. Moore, 2006. Evaluation of bottom trawls as compared to acoustics to assess adult lake herring (Coregonus artedi) abundance in Lake Superior. Journal of Great Lakes Research 32: 280–292.CrossRefGoogle Scholar
  96. Stockwell, J. D., T. R. Hrabik, O. P. Jensen, D. L. Yule & M. Balge, 2010. Empirical evaluation of predator-driven diel vertical migration in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 67: 473–485.CrossRefGoogle Scholar
  97. Stramski, D., 1986a. Fluctuations of solar irradiance induced by surface waves in the Baltic. Bulletin of the Polish Academy of Sciences. Earth Sciences 34: 333–344.Google Scholar
  98. Stramski, D., 1986b. The effect of daylight diffuseness on the focusing of sunlight by sea surface waves. Oceanologia 24: 11–27.Google Scholar
  99. Tebaldi, C., K. Hayhoe, J. M. Arblaster & G. A. Meehl, 2006. Going to the extremes. Climatic change 79: 185–211.CrossRefGoogle Scholar
  100. Vogel, J. L. & D. A. Beauchamp, 1999. Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Canadian Journal of Fisheries and Aquatic Sciences 56: 1293–1297.CrossRefGoogle Scholar
  101. Wang, J., J. Kessler, X. Bai, A. Clites, B. Lofgren, A. Assuncao & G. Leshkevich, 2018. Decadal variability of Great Lakes ice cover in response to AMO and PDO, 1963-2017. Journal of Climate 31: 7249–7268.CrossRefGoogle Scholar
  102. Walsh, J., D. Wuebbles, K. Hayhoe, J. Kossin, K. Kunkel, G. Stephens, P. Throne, R. Vose, M. Wehner, J. Willis, D. Anderson, S. Doney, R. Feely, P. Hennon, V. Kharin, T. Knutson, F. Landerer, T. Lenton, J. Kennedy, & R. Somerville, 2014. Ch. 2: Our Changing Climate. In J. M. Meillo, T. C. Richmond, & G. W. Yohe (eds), Climate Change Impacts in the United States: the Third National Climate Assessment. U.S. Global Change Research Program 19–67.Google Scholar
  103. Widder, E. A. & T. M. Frank, 2001. The speed of an isolume: a shrimp’s eye view. Marine Biology 138: 669–677.CrossRefGoogle Scholar
  104. Wright, J., 2006. The New York Times Almanac 2002. Routledge, London.Google Scholar
  105. Zaimes, G. & R. Emanuel, 2006. Stream Processes for Watershed Stewards. Arizona Watershed Stewardship Guide. College of Agricultural and Life Sciences, University of Arizona, Tucson.Google Scholar
  106. Zaneveld, J. R. V., E. Boss & A. Barnard, 2001. Influence of surface waves on measured and modeled irradiance profiles. Applied Optics 40: 1442–1449.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Trevor D. Keyler
    • 1
    • 2
    Email author
  • Bryan G. Matthias
    • 1
  • Thomas R. Hrabik
    • 1
  1. 1.Biology DepartmentUniversity of Minnesota DuluthDuluthUSA
  2. 2.Biology DepartmentCollege of St. Benedict/St. John’s UniversityCollegevilleUSA

Personalised recommendations