Bacterial endosymbionts of Placobdella (Annelida: Hirudinea: Glossiphoniidae): phylogeny, genetic distance, and vertical transmission

  • Claire Manglicmot
  • Alejandro Oceguera-Figueroa
  • Sebastian KvistEmail author
Primary Research Paper


Blood-feeding leeches of the genus Placobdella have acquired intracellular alphaproteobacterial endosymbionts of the genus Reichenowia that potentially aid in the production of B vitamins, thereby ameliorating the lack of these essential nutrients in the diet of the hosts. For Placobdella associates, little is still known about the diversity, genetic makeup, and the mode of transmission of bacteria between leeches. We aimed to (i) place the bacterial symbionts in a phylogenetic context, (ii) compare patterns of cladogenesis between the bacteria and hosts to search for evidence of co-speciation, and (iii) explore the mode of bacterial transmission between leech parent and offspring. DNA sequencing of the bacterial 16S rDNA and 23S rDNA loci suggests that, whereas Reichenowia forms a monophyletic group within the alphaproteobacterial family Rhizobiaceae, no evidence for co-speciation between hosts and bacteria can be traced. Attempts at DNA amplification for ovarial tissues were negative for a range of species, but two 16S rDNA sequences retrieved from the testisacs of P. rugosa showed very high similarity with Reichenowia. Although we cannot rule out that this may be a contamination, or a different, potentially free-living species of bacteria, our results may indicate that Reichenowia is transferred from leech parent to offspring via the testisacs.


Placobdella Reichenowia Rhizobiaceae Intracellular symbiosis Bacteriomes Phylogeny Co-phylogeny Species diversity 



We thank Steven Doyle for aiding with imaging, Michael Tessler for creating the script used to run TNT, and the Willi Hennig Society for making TNT freely available. Danielle de Carle and Rafael Iwama provided much input during analyses and interpretation of the results, which greatly benefitted the paper. We thank the Saskatchewan ministry of Parks, Culture, and Sports, the Ontario Ministry of the Environment, Conservation, and Parks, as well as Manitoba Parks for help with permitting. This research was funded by a NSERC Discovery grant and an Olle Engkvist Byggmästare stipend to SK.

Supplementary material

10750_2019_4175_MOESM1_ESM.tif (4.1 mb)
Supplementary material 1 (TIFF 4222 kb) Supplementary Fig. S1. Phylogenetic tree based on 16S and 23S rDNA resulting from the parsimony analysis (17,397 steps, consistency index = 0.344, retention index = 0.675). Bootstrap support values are shown above each node, and branch lengths are drawn proportional to the amount of change
10750_2019_4175_MOESM2_ESM.tif (2.9 mb)
Supplementary material 2 (TIFF 2971 kb) Supplementary Fig. S2. Phylogenetic tree based on 16S and 23S rDNA resulting from the Bayesian inference analysis. Posterior probabilities are shown as above each node, and branch lengths are drawn proportional to the amount of change
10750_2019_4175_MOESM3_ESM.tif (1.2 mb)
Supplementary material 3 (TIFF 1231 kb) Supplementary Fig. S3. Co-phylogeny solution map based on approximately 1,000 solutions for each of the event-cost schemes. The figure shows one of several isomorphic tanglemaps generated for the “01210 + time zones” scheme. Note that the earliest bifurcation of the host and symbiont trees begin at the same “timezone” such that their earlier nodes on the tree ‘overlap’. The ancestor to ex. P. hollensis, R. parasiticae, ex. P. lamothei, and ex. P. papillifera tend to be shown as horizontal transmission donors of duplicate lineages in other event-cost schemes as well (data not shown). These lineages also tend to undergo duplication and host-switching in other event-cost schemes
10750_2019_4175_MOESM4_ESM.tif (3.1 mb)
Supplementary material 4 (TIFF 3133 kb) Supplementary Fig. S4. Host-constrained maximum likelihood phylogeny resulting from the analysis of the concatenated 16S and 23S matrix. The symbiont topology was constrained to the host Placobdella phylogeny published by de Carle et al. (2016). Bootstrap support values > 50% are shown above each node. Branch lengths are drawn proportional to the amount of change. The final log likelihood score for this tree was -81439.0


  1. Akman, L., A. Yamashita, H. Watanabe, K. Oshima, T. Shiba, M. Hattori & S. Aksoy, 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genetics 32: 402–407.PubMedCrossRefGoogle Scholar
  2. Aschner, M., 1934. Studies on the symbiosis of the body louse: elimination of the symbionts by centrifugalisation of the eggs. Parasitology 26: 309–314.CrossRefGoogle Scholar
  3. Banerjee, R. & S. W. Ragsdale, 2003. The many faces of vitamin B 12: catalysis by cobalamin-dependent enzymes. Annual Review of Biochemistry 72: 209–247.PubMedCrossRefGoogle Scholar
  4. Bhuvaneswari, G. (2013). Molecular Characterization of camphor utilizing bacterial isolates from refinery sludge and detection of target loci-Cytochrome P-450 cam mono oxygenase (cam C gene) by PCR and gene probe. SpringerPlus, 2(1)Google Scholar
  5. Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut & A. J. Drummond, 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: 1–6.CrossRefGoogle Scholar
  6. Boyd, B. M., J. M. Allen, N. P. Nguyen, P. Vachaspati, Z. S. Quicksall, T. Warnow, L. Mugisha, K. P. Johnson & D. L. Reed, 2017. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Molecular Biology and Evolution 34: 1743–1757.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bright, M. & S. Bulgheresi, 2010. A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology 8: 218–230.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chakravorty, S., D. Helb, M. Burday, N. Connell & D. Alland, 2008. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods 69: 330–339.CrossRefGoogle Scholar
  9. Charleston, M. A. & D. L. Robertson, 2002. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Systematic Biology 51: 528–535.PubMedCrossRefGoogle Scholar
  10. Chiangkul, K., P. Trivalairat & W. Purivirojkul, 2018. Redescription of the Siamese shield leech Placobdelloides siamensis with new host species and geographic range. Parasite 25: 56.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Conow, C., D. Fielder, Y. Ovadia & R. Libeskind-Hadas, 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology 5: 1–10.CrossRefGoogle Scholar
  12. Daeschler, E. B., N. H. Shubin & F. A. Jenkins, 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440: 757–763.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dale, C. & S. C. Welburn, 2001. The endosymbionts of tsetse flies: manipulating host-parasite interactions. International Journal for Parasitology 31: 628–631.PubMedCrossRefPubMedCentralGoogle Scholar
  14. de Carle, D., A. Oceguera-Figueroa, M. Tessler, M. E. Siddall & S. Kvist, 2017. Phylogenetic analysis of Placobdella (Hirudinea: Rhynchobdellida: Glossiphoniidae) with consideration of COI variation. Molecular Phylogenetics and Evolution 114: 234–248.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Farikou, O., F. Njiokou, J. A. Mbida Mbida, G. R. Njitchouang, H. N. Djeunga, T. Asonganyi, P. P. Simarro, G. Cuny & A. Geiger, 2010. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes-an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infection, Genetics and Evolution 10: 115–121.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gage, D. J., 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing Rhizobia during nodulation of temperate legumes. Microbiology and Molecular Biology Reviews 68: 203.CrossRefGoogle Scholar
  17. Goloboff, P. A., J. S. Farris & K. C. Nixon, 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786.CrossRefGoogle Scholar
  18. Graf, J., Y. Kikuchi & R. V. M. Rio, 2006. Leeches and their microbiota: naturally simple symbiosis models. Trends in Microbiology 14: 365–371.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hill, P., D. S. Saunders & J. Allan Campbell, 1973. The production of “symbiont-free” Glossina morsitans and an associated loss of female fertility. Transactions of the Royal Society of Tropical Medicine and Hygiene 67: 727–728.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hosokawa, T., R. Koga, Y. Kikuchi, X.-Y. Meng & T. Fukatsu, 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences 107: 769–774.CrossRefGoogle Scholar
  21. Janda, J. M. & S. L. Abbott, 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology 45: 2761–2764.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jones, K. M., H. Kobayashi, B. W. Davies, M. E. Taga & G. C. Walker, 2007. How rhizobial symbionts invade plants: the Sinorhizobium - Medicago model. Nature Reviews Microbiology 5: 619–633.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kaiwa, N., T. Hosokawa, N. Nikoh, M. Tanahashi, M. Moriyama, X. Y. Meng, T. Maeda, K. Yamaguchi, S. Shigenobu, M. Ito & T. Fukatsu, 2014. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Current Biology 24: 2465–2470.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Katoh, K. & D. M. Standley, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, et al., 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.PubMedPubMedCentralGoogle Scholar
  26. Kikuchi, Y. & T. Fukatsu, 2002. Endosymbiotic bacteria in the esophageal organ of glossiphoniid leeches. Applied and Environmental Microbiology 68: 4637–4641.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Klemm, D. J., 1985. A Guide to the Freshwater Annelida (Polychaeta, Naidid and Tubificid Oligochaeta, and Hirudinea) of North America. Kendall-Hunt Publishing Company, Dubuque.Google Scholar
  28. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7), 1870–1874.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kvist, S., A. Narechania, A. Oceguera-Figueroa, B. Fuks & M. E. Siddall, 2011. Phylogenomics of Reichenowia parasitica, an alphaproteobacterial endosymbiont of the freshwater leech Placobdella parasitica. PLoS ONE 6: 1–10.CrossRefGoogle Scholar
  30. Lanfear, R., B. Calcott, S. Y. W. Ho & S. Guindon, 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lehane, M. J., 1991. Managing the Blood Meal. Biology of Blood-Sucking Insects. Cambridge University Press, Dordrecht.CrossRefGoogle Scholar
  32. Manzano-Marín, A., A. Oceguera-Figueroa, A. Latorre, L. F. Jiménez-García & A. Moya, 2015. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biology and Evolution 7: 2871–2884.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Masson-Boivin, C., E. Giraud, X. Perret & J. Batut, 2009. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends in Microbiology 17: 458–466.PubMedCrossRefGoogle Scholar
  34. Michalkova, V., J. B. Benoit, B. L. Weiss, G. M. Attardo & S. Aksoy, 2014. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Applied and Environmental Microbiology 80: 5844–5853.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Miller, M. A., W. Pfeiffer, & T. Schwartz, 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE) 1–8.Google Scholar
  36. Moran, N. A., J. P. McCutcheon & A. Nakabachi, 2008. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42: 165–190.PubMedCrossRefGoogle Scholar
  37. Moser, W. E., D. J. Richardson, C. I. Hammond, F. R. Govedich & E. A. Lazo-Wasem, 2012a. Resurrection and redescription of Placobdella rugosa (Verrill, 1874) (Hirudinida: Glossiphoniidae). Bulletin of the Peabody Museum of Natural History 53: 375–381.CrossRefGoogle Scholar
  38. Moser, W. E., D. J. Richardson, C. I. Hammond & E. A. Lazo-wasem, 2012b. Redescription of Placobdella ornata (Verrill, 1872) (Hirudinida: Glossiphoniidae). Bulletin of the Peabody Museum of Natural History 53: 325–330.CrossRefGoogle Scholar
  39. Moser, W. E., J. T. Briggler, D. J. Richardson, C. D. Schuette, C. I. Hammond, W. A. Hopkins & E. A. Lazo-Wasem, 2013a. Redescription and molecular characterization of Placobdella cryptobranchii (Johnson & Klemm, 1977) (Glossiphoniidae, Hirudinida). ZooKeys 338: 1–10.CrossRefGoogle Scholar
  40. Moser, W. E., D. J. Richardson, C. I. Hammond & E. A. Lazo-wasem, 2013b. Redescription of Placobdella parasitica (Say, 1824) Moore, 1901 (Hirudinida: Glossiphoniidae). Bulletin of the Peabody Museum of Natural History 1901: 255–262.CrossRefGoogle Scholar
  41. Moser, W. E., D. J. Richardson, C. I. Hammond & E. A. Lazo-Wasem, 2013c. Redescription of Placobdella papillifera Verrill, 1872 (Hirudinida: Glossiphoniidae). Bulletin of the Peabody Museum of Natural History 54: 125–131.CrossRefGoogle Scholar
  42. Moser, W. E., D. J. Richardson, C. I. Hammond & E. A. Lazo-Wasem, 2014. Redescription and characterization of Placobdella hollensis (Whitman, 1892) (Hirudinida: Glossiphoniidae). Bulletin of the Peabody Museum of Natural History 55: 49–55.CrossRefGoogle Scholar
  43. Nguyen, L. T., Schmidt, H. A., von Haeseler A., & Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nikoh, N., T. Hosokawa, M. Moriyama, K. Oshima, M. Hattori & T. Fukatsu, 2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proceedings of the National Academy of Sciences 111: 10257–10262.CrossRefGoogle Scholar
  45. Nogge, G., 1976. Sterility in tsetse flies (Glossina morsitans Westwood) caused by loss of symbionts. Experientia 32: 995–996.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nogge, G., 1981. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in hematophagous arthoropods. Parasitology 82: 101–104.Google Scholar
  47. Perkins, S. L., R. B. Budinoff & M. E. Siddall, 2005. New gammaproteobacteria associated with blood-feeding leeches and a broad phylogenetic analysis of leech endosymbionts. Applied and Environmental Microbiology 71: 5219–5224.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ronquist, F., M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  51. Sawyer, R. T., 1986. Leech Biology and Behaviour. Oxford University Press, New York: 419–793.Google Scholar
  52. Schneider, C. A., W. S. Rasband & K. W. Eliceiri, 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Serbus, L. R., C. Casper-Lindley, F. Landmann & W. Sullivan, 2008. The genetics and cell biology of Wolbachia-Host Interactions. Annual Review of Genetics 42: 683–707.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Shimodaira, H. & M. Hasegawa, 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 1114–1116.CrossRefGoogle Scholar
  55. Siddall, M. E., S. L. Perkins & S. S. Desser, 2004. Leech mycetome endosymbionts are a new lineage of alphaproteobacteria related to the Rhizobiaceae. Molecular Phylogenetics and Evolution 30: 178–186.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Siddall, M. E., R. B. Budinoff & E. Borda, 2005. Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebrate Systematics 19: 105–112.CrossRefGoogle Scholar
  57. Smith, T. A., T. Driscoll, J. J. Gillespie & R. Raghavan, 2015. A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biology and Evolution 7: 831–838.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tindall, B. J., R. Rosselló-Móra, H. J. Busse, W. Ludwig & P. Kämpfer, 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology 60: 249–266.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Van Camp, G., S. Chapelle & R. De Wachter, 1993. Amplification and sequencing of variable regions in bacterial 23S ribosomal RNA genes with conserved primer sequences. Current Microbiology 27: 147–151.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Wilmotte, A., G. Van der Auwera & R. De Wachter, 1993. Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium. FEBS Journal 317: 96–100.CrossRefGoogle Scholar
  62. Wilson, A. C. C. & R. P. Duncan, 2015. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proceedings of the National Academy of Sciences 112: 10255–10261.CrossRefGoogle Scholar
  63. Zhong, J., A. Jasinskas & A. G. Barbour, 2007. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2: 1–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  3. 3.Laboratorio de Helmintología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations