Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts

  • Rebecca J. HowardEmail author
  • Andrew S. From
  • Ken W. Krauss
  • Kimberly D. Andres
  • Nicole Cormier
  • Larry Allain
  • Michael Savarese
Primary Research Paper


Mangrove forest encroachment into coastal marsh habitats has been described in subtropical regions worldwide in recent decades. To better understand how soil processes may influence vegetation change, we studied soil surface elevation change, accretion rates, and soil subsurface change across a coastal salinity gradient in Florida, USA, an area with documented mangrove encroachment into saline marshes. Our aim was to identify if variations in the soil variables studied exist and to document any associated vegetation shifts. We used surface elevation tables and marker horizons to document the soil variables over 5 years in a mangrove-to-marsh transition zone or ecotone. Study sites were located in three marsh types (brackish, salt, and transition) and in riverine mangrove forests. Mangrove forest sites had significantly higher accretion rates than marsh sites and were the only locations where elevation gain occurred. Significant loss in surface elevation occurred at transition and salt marsh sites. Transition marshes, which had a significantly higher rate of shallow subsidence compared to other wetland types, appear to be most vulnerable to submergence or to a shift to mangrove forest. Submergence can result in herbaceous vegetation mortality and conversion to open water, with severe implications to the quantity and quality of wetland services provided.


Accretion Coastal marsh Mangrove forest encroachment Sea-level rise Subsidence Vegetation change 



Funding for this study was provided by the U.S. Fish and Wildlife Service (Intragovernmental Agreements 4500035235, 4500081468) and the U.S. Geological Survey Ecosystems Mission Area. We thank Kevin Godsea, Wade Gurley, and Mark Danaher, U.S. Fish and Wildlife Service, for logistical and technical support. Darren Johnson, Cherokee Nation Technologies, Wetland and Aquatic Research Center, provided data analyses. Comments provided by Donald Cahoon and anonymous reviewers helped to improve the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The data are available at (Howard et al., 2019).

Supplementary material

10750_2019_4170_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)


  1. Andres, K. D., 2016. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. M.S. Thesis: Fort Myers, FL, Florida Gulf Coast University: 191 pp.Google Scholar
  2. Andres, K. D., M. Savarese, B. Bovard & M. Parsons, 2019. Coastal wetland geomorphic and vegetation change: effects of sea-level rise and water management on brackish marshes. Estuaries and Coasts 42: 1308–1327.CrossRefGoogle Scholar
  3. Anisfeld, S. C., T. D. Hill & D. R. Cahoon, 2016. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuarine, Coastal and Shelf Science 170: 145–154.CrossRefGoogle Scholar
  4. Armitage, A. R., W. E. Highfield, S. D. Brody & P. Louchouarn, 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10: e0125404.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bargar, N. N., S. R. Archer, J. L. Campbell, C. Huang, J. A. Morton & A. K. Knapp, 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. Journal of Geophysical Research 116: G00K07.Google Scholar
  6. Baustian, J. J., I. A. Mendelssohn & M. A. Hester, 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382.CrossRefGoogle Scholar
  7. Bianchi, T. S., M. A. Allison, J. Zhao, R. S. Comeaux, R. A. Feagin & R. W. Kulawardhana, 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science 119: 7–16.CrossRefGoogle Scholar
  8. Blasco, F., P. Saenger & E. Janodet, 1996. Mangroves as indicators of coastal change. Catena 27: 167–178.CrossRefGoogle Scholar
  9. Booth, A. C., L. E. Soderqvist & M. C. Berry, 2014. Flow monitoring along the western Tamiami trail between County Road 92 and State Road 29 in support of the comprehensive Everglades Restoration Plan, 2007–2010. U.S. Geological Survey Data Series 831, U.S. Geological Survey, Reston, Virginia.Google Scholar
  10. Brown, R. B., E. L. Stone & V. W. Carlisle, 1990. Soils. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Orlando: 35–69.Google Scholar
  11. Cahoon, D. R., 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084.CrossRefGoogle Scholar
  12. Cahoon, D. R. & R. E. Turner, 1989. Accretion and canal impacts in a rapidly subsiding wetland II: feldspar marker horizon technique. Estuaries 12: 260–268.CrossRefGoogle Scholar
  13. Cahoon, D. R. & J. C. Lynch, 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves and Salt Marshes 1: 173–186.CrossRefGoogle Scholar
  14. Cahoon, D. R., D. J. Reed & J. W. Day Jr., 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.CrossRefGoogle Scholar
  15. Cahoon, D. R., J. R. French, T. Spencer, D. Reed & I. Möhher, 2000. Vertical accretion versus elevational adjustments in UK saltmarshes: an evaluation of alternative methodologies. In Pye, K. & J. R. L. Allen (eds), Coastal and estuarine environments: sedimentology, geomorphology and geoarchaeology. Special Publication 175. The Geographical Society of London, London: 223–238.Google Scholar
  16. Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt & B. C. Perez, 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.CrossRefGoogle Scholar
  17. Cahoon, D. R., J. C. Lynch, B. C. Perez, B. Segura, R. D. Holland, C. Stelly, G. Stephenson & P. Hensel, 2002. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research 72: 734–739.CrossRefGoogle Scholar
  18. Cannicci, S., D. Burrows, S. Fratini, T. J. Smith III, J. Offenberg & F. Dahdouh-Guebas, 2008. Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquatic Botany 89: 186–200.CrossRefGoogle Scholar
  19. Cavanaugh, K. C., J. D. Parker, S. C. Cook-Patton, I. C. Feller, A. P. Williams & J. R. Kellner, 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21: 1928–1938.PubMedCrossRefGoogle Scholar
  20. Chmura, G. L., S. C. Anisfeld, D. R. Cahoon & J. C. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1–12.CrossRefGoogle Scholar
  21. Clarke, P. J. & R. A. Kerrigan, 2002. The effects of seed predators on the recruitment of mangroves. Journal of Ecology 90: 728–736.CrossRefGoogle Scholar
  22. Coldren, G. A., C. R. Barreto, D. D. Wykoff, E. M. Morrissey, J. A. Langley, I. C. Feller & S. K. Chapman, 2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 97: 3167–3175.PubMedCrossRefGoogle Scholar
  23. Comeaux, R. S., M. A. Allison & T. S. Bianchi, 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.CrossRefGoogle Scholar
  24. Crosby, S. C., D. F. Sax, M. E. Palmer, H. S. Booth, L. A. Deegan, M. D. Bertness & H. M. Leslie, 2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuarine, Coastal and Shelf Science 181: 93–99.CrossRefGoogle Scholar
  25. Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse & R. Riva, 2017. Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences 114: 5941–5946.CrossRefGoogle Scholar
  26. Day Jr., J. W., L. D. Britsch, S. R. Hawes, G. P. Shaffer, D. J. Reed & D. Cahoon, 2000. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.CrossRefGoogle Scholar
  27. Day, J. W., G. P. Kemp, D. J. Reed, D. R. Cahoon, R. M. Boumans, J. J. Suhayda & R. Gambrell, 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: the role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37: 229–240.CrossRefGoogle Scholar
  28. DeLaune, R. D., J. A. Nyman & W. H. Patrick Jr., 1994. Peat collapse, ponding, and wetland loss in a rapidly submerging coastal marsh. Journal of Coastal Research 10: 1021–1030.Google Scholar
  29. Donnelly, M. & L. Walters, 2014. Trapping of Rhizophora mangle propagules by coexisting early successional species. Estuaries and Coasts 37: 1562–1571.CrossRefGoogle Scholar
  30. Donoghue, J. F., 2011. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change 107: 17–33.CrossRefGoogle Scholar
  31. Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub & S. K. Chapman, 2016. Mangrove range expansion rapidly increases coastal carbon storage. Estuaries and Coasts 39: 385–396.CrossRefGoogle Scholar
  32. Doyle, T. W., T. J. Smith III & M. B. Robblee, 1995. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. Journal of Coastal Research SI 21: 159–169.Google Scholar
  33. Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa & N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.CrossRefGoogle Scholar
  34. Duever, M. J., J. F. Meeder, L. C. Meeder & J. M. McCollom, 1994. The climate of south Florida and its role in shaping the Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades, the ecosystem and its restoration. St. Lucie Press, Delray Beach: 225–248.Google Scholar
  35. Duke, N. C., J. M. Kovacs, A. D. Griffiths, L. Preece, D. J. E. Hill, P. van Oosterzee, J. Mackenzie, H. S. Morning & D. Burrows, 2017. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research 68: 1816–1829.CrossRefGoogle Scholar
  36. Feher, L. C., M. J. Osland, K. T. Griffith, J. B. Grace, R. J. Howard, C. L. Stagg, N. M. Enwright, K. W. Krauss, C. A. Gabler, R. H. Day & K. Rogers, 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8: e01956.CrossRefGoogle Scholar
  37. Flower, H., M. Rains & C. Fits, 2017. Visioning the future: scenarios modeling of the Florida coastal Everglades. Environmental Management 60: 989–1009.PubMedCrossRefGoogle Scholar
  38. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology and Systematics 35: 557–581.CrossRefGoogle Scholar
  39. Fraser, L. H. & J. P. Karnezis, 2005. A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water depth differences. Wetlands 25: 520–530.CrossRefGoogle Scholar
  40. Gabler, C. A., M. J. Osland, J. B. Grace, C. L. Stagg, R. H. Day, S. B. Hartley, N. M. Enwright, A. S. From, M. L. McCoy & J. L. McLeod, 2017. Macroclimate change expected to transform coastal wetland ecosystems this century. Nature Climate Change Letters 7: 142–147.CrossRefGoogle Scholar
  41. Guo, H., C. Weaver, S. P. Charles, A. Whitt, S. Dastidar, P. D’Odorico, J. D. Fuentes, J. S. Kominoski, A. R. Armitage & S. C. Pennings, 2017. Coastal regime shifts: rapid response of coastal wetlands to changes in mangrove cover. Ecology 98: 762–772.PubMedCrossRefGoogle Scholar
  42. Guo, H., Y. Zhang, L. Zhenjiang & S. C. Pennings, 2013. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology 19: 2765–2774.PubMedCrossRefGoogle Scholar
  43. Henry, K. M. & R. R. Twilley, 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29: 1273–1283.CrossRefGoogle Scholar
  44. Howard, R. J., K. W. Krauss, N. Cormier, R. H. Day, J. Biagas & L. Allain, 2015. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers. Journal of Vegetation Science 26: 1198–1211.CrossRefGoogle Scholar
  45. Howard, R. J., J. Biagas & L. Allain, 2016. Growth of common brackish marsh macrophytes under altered hydrologic and salinity regimes. Wetlands 36: 11–20.CrossRefGoogle Scholar
  46. Howard, R. J., R. H. Day, K. W. Krauss, A. S. From, L. Allain & N. Cormier, 2017. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone. Restoration Ecology 25: 471–482.CrossRefGoogle Scholar
  47. Howard, R. J., A. S. From & L. Allain, 2019. Soil surface elevation dynamics in a mangrove-to-marsh ecotone characterized by vegetation shifts. U.S. Geological Survey data release.
  48. Howard, R. J. & P. S. Rafferty, 2006. Clonal variation in response to salinity and flooding stress in four marsh macrophytes of the northern Gulf of Mexico, USA. Environmental and Experimental Botany 56: 301–313.CrossRefGoogle Scholar
  49. Jowsey, P. C., 1966. An improved peat sampler. New Phytologist 65: 245–248.CrossRefGoogle Scholar
  50. Kearny, M. S., R. E. Grace & J. C. Stevenson, 1988. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geographical Review 78: 205–220.CrossRefGoogle Scholar
  51. Kelleway, J. J., K. Cavanaugh, K. Rogers, I. C. Feller, E. Ens, C. Doughty & N. Saintilan, 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23: 3967–3983.PubMedCrossRefGoogle Scholar
  52. Kelleway, J. J., N. Saintilan, P. I. MacReadie, C. G. Skilbeck, A. Zawadzki & P. J. Ralph, 2016. Seventy years of continuous encroachment substantially increases ‘blue carbon’ capacity as mangroves replace intertidal salt marshes. Global Change Biology 22: 1097–1109.PubMedCrossRefGoogle Scholar
  53. Kirwan, M. L. & J. P. Megonigal, 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60.PubMedCrossRefGoogle Scholar
  54. Kirwan, M. & S. Temmerman, 2009. Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews 28: 1801–1808.CrossRefGoogle Scholar
  55. Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle & M. J. Barry, 2011. Sea-level rise and landscape change influence mangrove encroachment onto salt marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15: 629–638.CrossRefGoogle Scholar
  56. Krauss, K. W., A. W. J. Demopoulos, N. Cormier, A. S. From, J. P. McClain-Counts & R. R. Lewis III, 2018. Ghost forests of Marco Island: mangrove mortality driven by belowground soil structural shifts during tidal hydrologic alteration. Coastal, Estuarine and Shelf Science 212: 51–62.CrossRefGoogle Scholar
  57. Krauss, K. W., K. L. McKee, C. E. Lovelock, D. R. Cahoon, N. Saintilan, R. Reef & L. Chen, 2014. How mangrove forests adjust to rising sea level. The New Phytologist 202: 19–34.PubMedCrossRefGoogle Scholar
  58. Lefor, M. W., W. C. Kennard & D. L. Civco, 1987. Relationship of salt-marsh plant distributions to tidal levels in Connecticut, USA. Environmental Management 11: 61–68.CrossRefGoogle Scholar
  59. Lamers, L. P. M., L. L. Govers, I. C. J. M. Janssen, J. J. M. Geurts, M. E. W. Van der Welle, M. M. Van Katwijk, T. Van der Heide, J. G. M. Roelofs & A. J. P. Smolders, 2013. Sulfide as a soil phytotoxin – a review. Frontiers in Plant Science. Scholar
  60. Lewis III, R. R., 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering 24: 403–418.CrossRefGoogle Scholar
  61. Lewis III, R. R., E. C. Milbrandt, B. Brown, K. W. Krauss, A. S. Rovai, J. W. Beever III & L. L. Flynn, 2016. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forests management. Marine Pollution Bulletin 109: 764–771.PubMedCrossRefGoogle Scholar
  62. Li, S., I. A. Mendelssohn, H. Chen & W. H. Orem, 2009. Does sulphate enrichment promote the expansion of Typha domingensis (cattail) in the Florida Everglades? Freshwater Biology 54: 1909–1923.CrossRefGoogle Scholar
  63. Lodge, T. E., 2010. The Everglades Handbook: Understanding the Ecosystem, 3rd ed. CRC Press, Boca Raton.Google Scholar
  64. Lonard, R. I., F. W. Judd & R. Stalter, 2013. The biological flora of coastal dunes and wetlands: Distichlis spicata (C. Linnaeus) E. Greene. Journal of Coastal Research 29: 106–117.Google Scholar
  65. Lovelock, C. E., I. C. Feller, R. Reef, S. Hickey & M. C. Ball, 2017. Mangrove dieback during fluctuating sea levels. Scientific Reports 7: 1680.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lugo, A. E., 1997. Old-growth mangrove forests in the United States. Conservation Biology 11: 11–20.CrossRefGoogle Scholar
  67. Luo, M., J. Huang, W. Zhu & C. Tong, 2019. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827: 31–49.CrossRefGoogle Scholar
  68. Maricle, B. R., D. R. Cobos & C. S. Campbell, 2007. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses. Environmental and Experimental Botany 60: 458–467.CrossRefGoogle Scholar
  69. McCoy, E. D., H. R. Mushinsky, D. Johnson & W. E. Meshaka Jr., 1996. Mangrove damage caused by Hurricane Andrew on the southwestern coast of Florida. Bulletin of Marine Science 59: 1–8.Google Scholar
  70. Mcleod, E., G. L. Chmura, S. Bouillion, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.CrossRefGoogle Scholar
  71. McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.CrossRefGoogle Scholar
  72. McKee, K. L. & J. E. Rooth, 2008. Where temperate meets tropical: multifactorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14: 1–14.CrossRefGoogle Scholar
  73. McKee, K. L. & W. C. Vervaeke, 2018. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24: 1224–1238.PubMedCrossRefGoogle Scholar
  74. McKee, K. L., D. R. Cahoon & I. C. Feller, 2007a. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.CrossRefGoogle Scholar
  75. McKee, K. L., J. E. Rooth & I. C. Feller, 2007b. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecological Applications 17: 1678–1693.PubMedCrossRefGoogle Scholar
  76. McKee, K. L., K. Rogers & N. Saintilan, 2012. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea level. In Middleton, B. A. (ed.), Global Change and the Function and Distribution of Wetlands. Springer, Dordrecht: 63–96.CrossRefGoogle Scholar
  77. Meeder, J. F., R. W. Parkinson, P. L. Ruiz & M. S. Ross, 2017. Saltwater encroachment and prediction of future ecosystem response to the Anthropocene Marine Transgression, southeast saline Everglades, Florida. Hydrobiologia 803: 29–48.CrossRefGoogle Scholar
  78. Mendelssohn, I. A. & K. L. McKee, 1988. Spartina alterniflora dieback in Louisiana: time-course investigation of soil waterlogging effects. Journal of Ecology 76: 509–521.CrossRefGoogle Scholar
  79. Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve & D. R. Cahoon, 2002. Response of coastal wetlands to rising sea levels. Ecology 83: 2869–2877.CrossRefGoogle Scholar
  80. Morton, R. A., J. C. Bernier & J. A. Barras, 2006. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environmental Geology 50: 261–274.CrossRefGoogle Scholar
  81. NOAA, 2018a. Tides and Currents, Station Information. Accessed 27 Sept 2018.
  82. NOAA, 2018b. Tides and Currents, Sea Level Trends. Accessed 20 Mar 2018.
  83. Nyman, J. A., R. D. DeLaune, H. H. Roberts & W. H. Patrick Jr., 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–279.CrossRefGoogle Scholar
  84. Nyman, J. A., R. J. Walters, R. D. DeLaune & W. H. Patrick Jr., 2006. Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69: 370–380.CrossRefGoogle Scholar
  85. Odum, W. E. & C. C. McIvor, 1990. Mangroves. In Meyers, R. L. & J. J. Ewel (eds), Ecosystems of Florida. University of Central Florida Press, Gainesville: 517–548.Google Scholar
  86. Osland, M. J., R. H. Day, J. C. Larriviere & A. S. From, 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9: e99604.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Osland, M. J., K. T. Griffith, J. C. Larriviere, L. C. Feher, D. R. Cahoon, et al., 2017. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: gaps and opportunities for developing a coordinated regional sampling network. PloS ONE 12: e0183431.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Osland, M. J., N. M. Enwright, R. H. Day, C. A. Gabler, C. L. Stagg & J. B. Grace, 2016. Beyond just sea-level rise: considering macroclimate drivers within costal wetland vulnerability assessments to climate change. Global Change Biology 22: 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Patterson, C. S., I. A. Mendelssohn & E. M. Swenson, 1993. Growth and survival of Avicennia germinans seedlings in a mangle/salt marsh community in Louisiana, USA. Journal of Coastal Research 9: 801–810.Google Scholar
  90. Pellegrini, A. F. A., W. A. Hoffman & A. C. Franco, 2014. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95: 342–352.PubMedCrossRefGoogle Scholar
  91. Perry, C. L. & I. A. Mendelssohn, 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29: 396–406.CrossRefGoogle Scholar
  92. Peterson, J. M. & S. S. Bell, 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across and ecotone. Ecology 93: 1648–1658.PubMedCrossRefGoogle Scholar
  93. Reed, D. J., 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20: 39–48.CrossRefGoogle Scholar
  94. Reed, D. J., 1999. Response of mineral and organic components of coastal marsh accretion to global climate change. Current Topics in Wetland Biogeochemistry 3: 90–99.Google Scholar
  95. Richard, D. R. & D. A. Friess, 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences 113: 344–349.CrossRefGoogle Scholar
  96. Rogers, K., N. Saintilan & H. Heijnis, 2005. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence, and sea level rise. Estuaries 28: 551–559.CrossRefGoogle Scholar
  97. Rogers, K., K. M. Wilton & N. Saintilan, 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science 66: 559–569.CrossRefGoogle Scholar
  98. Rogers, K., N. Saintilan, A. J. Howe & J. F. Rodríguez, 2013. Sedimentation, elevation, and marsh evolution in a southwestern Australian estuary during changing climatic conditions. Estuarine, Coastal and Shelf Science 133: 172–181.CrossRefGoogle Scholar
  99. Ross, M. E., J. F. Meeder, J. P. Sah, P. L. Ruiz & G. J. Telesnicki, 2000. The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–112.CrossRefGoogle Scholar
  100. Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran & K. W. Krauss, 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20: 147–157.PubMedCrossRefGoogle Scholar
  101. Sallenger Jr., A. H., K. S. Doran & P. A. Howd, 2012. Hotspots of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2: 884–888.CrossRefGoogle Scholar
  102. Scharenbroch, B. C., M. L. Flores-Mangual, B. Lepore, J. G. Bockheim & B. Lowery, 2010. Tree encroachment impacts carbon dynamics in a sand prairie in Wisconsin. Soil Science Society of America Journal 74(956–96): 8.Google Scholar
  103. Schepers, L., M. Kirwan, G. Guntenspergen & S. Temmerman, 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography 62: 137–150.CrossRefGoogle Scholar
  104. Sherman, R. E., T. J. Fahey & J. J. Battles, 2000. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88: 165–178.CrossRefGoogle Scholar
  105. Sherrod, C. L., D. L. Hockaday & C. McMillan, 1986. Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science 29: 27–36.Google Scholar
  106. Shiflet, T. N., 1963. Major ecological factors controlling plant communities in Louisiana marshes. Journal of Range Management 16: 231–235.CrossRefGoogle Scholar
  107. Simpson, L. T., T. Z. Osborne, L. J. Duckett & I. C. Feller, 2017. Carbon storage along a climate induced coastal wetland gradient. Wetlands 37: 1023–1035.CrossRefGoogle Scholar
  108. Simpson, L. T., C. M. Stein, T. Z. Osborne & I. C. Feller, 2019. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 834: 13–26.CrossRefGoogle Scholar
  109. Smith III, T. J., M. B. Robblee, H. R. Wanless & T. W. Doyle, 1994. Mangroves, hurricanes, and lightning strikes. BioScience 44: 256–262.CrossRefGoogle Scholar
  110. Spalding, E. A. & M. W. Hester, 2007. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise. Estuaries and Coasts 30: 214–225.CrossRefGoogle Scholar
  111. Stevens, P. W., S. L. Fox & C. L. Montague, 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14: 435–444.CrossRefGoogle Scholar
  112. Stevenson, J. C., M. S. Kearney & E. C. Pendleton, 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Marine Geology 67: 213–235.CrossRefGoogle Scholar
  113. Törnqvist, T. E., D. J. Wallace, J. E. A. Storms, J. Wallinga, R. L. Van Dam, M. Blaauw, M. S. Derksen, C. J. W. Klerks, C. Meijneken & E. M. A. Snijders, 2008. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geoscience 1: 173–176.CrossRefGoogle Scholar
  114. U.S. Army Corps of Engineers, 2019. Picayune Strand Restoration Project facts and information. Accessed 1 Sept 2019.
  115. Yando, E. S., M. J. Osland, J. M. Willis, R. H. Day, K. W. Krauss & M. W. Hester, 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. Journal of Ecology 104: 1020–1031.CrossRefGoogle Scholar
  116. Yuill, B., D. Lavoie & D. J. Reed, 2009. Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research SI54: 23–36.CrossRefGoogle Scholar
  117. Valle-Levinson, A., A. Dutton & J. B. Martin, 2017. Spatial and temporal variability of sea level rise hot spots over the eastern United States. Geophysical Research Letters. Scholar
  118. Visser, J. M. & E. R. Sandy, 2009. The effects of flooding on four common Louisiana marsh plants. Gulf of Mexico Science 1: 21–29.Google Scholar
  119. Wahl, T., F. M. Calafat & M. E. Luther, 2014. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophysical Research Letters. Scholar
  120. Watson, E. B., H. M. Andrews, A. Fischer, M. Cencer, L. Coiro, S. Kelley & C. Wigand, 2015. Growth and photosynthesis responses of two co-occurring marsh grasses to inundation and varied nutrients. Botany 93: 671–683.CrossRefGoogle Scholar
  121. Webb, E. L., D. A. Friess, K. W. Krauss, D. R. Cahoon, G. Guntenspergen & J. Phelps, 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3: 458–465.CrossRefGoogle Scholar
  122. Wilson, K. R., J. T. Kelley, B. R. Tanner & D. F. Belknap, 2010. Probing the origins and stratigraphic signature of salt ponds from north-temperate marshes in Maine, U.S.A. Journal of Coastal Research 26: 1007–1026.CrossRefGoogle Scholar
  123. Zhang, Y., G. Huang, W. Wang, L. Chen & G. Lin, 2012. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 9: 588–597.CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.U.S. Geological SurveyWetland and Aquatic Research CenterLafayetteUSA
  2. 2.Department of Marine and Ecological SciencesFlorida Gulf Coast UniversityFort MyersUSA
  3. 3.Department of Earth and Environmental SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations