Divergence in foraging and predator avoidance behavior across the geographic range of native and non-native crayfish

  • Lindsey S. ReisingerEmail author
  • Mael G. Glon
  • Lauren M. Pintor
Primary Research Paper


There is growing evidence that species’ traits may diverge during biological invasions; however, we still lack a general understanding of how the invasion process affects behavior. We used a biogeographic approach to compare foraging and antipredator behavior across a reciprocal invasion (in which each species invaded the native range of the other) of virile (Faxonius virilis) and rusty crayfish (F. rusticus). We hypothesized that the invasion process would select for individuals that invest more in foraging and less in defense than their native counterparts. We used laboratory experiments to examine crayfish boldness, activity, and foraging voracity and mesocosm experiments to examine antipredator behavior in response to fish. Non-native virile crayfish (Indiana, USA) were less bold, active and voracious than native virile crayfish (Wisconsin, USA), and they exhibited more antipredator behavior. Non-native rusty crayfish (Wisconsin) were more active in mesocosms and exhibited less antipredator behavior than native rusty crayfish (Indiana). Combined, these findings suggest a growth/mortality trade-off. Counter to our hypothesis, relative investment in foraging versus predator avoidance differed across regions and was not consistently associated with native or invasive populations. Thus, the substantial divergence in behavior we observed may by driven by local adaptation.


Growth-mortality trade-off Invasive species Evolution Plasticity Predation Competition 



For help with crayfish collection and husbandry, we thank 2016 Central Michigan University (CMU) Great Lakes Summer Research Program students, students in the Pintor Lab at The Ohio State University (OSU), the University of Wisconsin-Madison’s Trout Lake Station Staff, and Y Guy and R Zhu. In addition, we are grateful to the CMU Biological Station staff for assistance with mesocosm setup and maintenance and R Clark for assistance with fabrication of experimental equipment. This work was supported by OSU School of Environment and Natural Resources; the Ohio Agricultural Research and Development Center; and CMU Institute for Great Lakes Research. This manuscript is contribution 136 to CMU’s Institute for Great Lakes Research.


  1. Baldridge, A. K. & L. D. Smith, 2008. Temperature constraints on phenotypic plasticity explain biogeographic patterns in predator trophic morphology. Marine Ecology Progress Series 365: 25–34.CrossRefGoogle Scholar
  2. Bassar, R. D., M. C. Marshall, A. López-Sepulcre, E. Zandonà, S. K. Auer, J. Travis, C. M. Pringle, A. S. Flecker, S. A. Thomas, D. F. Fraser, D. N. Reznick, A. Lopez-Sepulcre, E. Zandona, S. K. Auer, J. Travis, C. M. Pringle, A. S. Flecker, S. A. Thomas, D. F. Fraser & D. N. Reznick, 2010. Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America 107: 3616–3621.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  4. Biro, P. A. & J. A. Stamps, 2008. Are animal personality traits linked to life-history productivity? Trends in Ecology and Evolution 23: 361–368.PubMedCrossRefGoogle Scholar
  5. Biro, P. A., M. V. Abrahams, J. R. Post & E. A. Parkinson, 2006. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. Journal of Animal Ecology 75: 1165–1171.PubMedCrossRefGoogle Scholar
  6. Biro, P. A., M. V. Abrahams & J. R. Post, 2007. Direct manipulation of behaviour reveals a mechanism for variation in growth and mortality among prey populations. Animal Behaviour 73: 891–896.CrossRefGoogle Scholar
  7. Biro, P. A., B. Adriaenssens & P. Sampson, 2014. Individual and sex-specific differences in intrinsic growth rate covary with consistent individual differences in behaviour. Journal of Animal Ecology 83: 1186–1195.PubMedCrossRefGoogle Scholar
  8. Blanckenhorn, W. U., 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111: 977–1016.CrossRefGoogle Scholar
  9. Boschung, H. T., J. D. Williams, D. W. Gotshall, D. K. Caldwell, M. C. Caldwell, C. Nehring & J. Verner, 1983. The Audubon Society field guide to North American fishes, whales, and dolphins. Alfred A, Knopf.Google Scholar
  10. Brodin, T. & F. Johansson, 2004. Conflicting selection pressures on the growth/predation-risk trade-off in a damselfly. Ecology 85: 2927–2932.CrossRefGoogle Scholar
  11. Burton, O. J., B. L. Phillips & J. M. J. Travis, 2010. Trade-offs and the evolution of life-histories during range expansion. Ecology Letters 13: 1210–1220.PubMedCrossRefGoogle Scholar
  12. Capellini, I., J. Baker, W. L. Allen, S. E. Street & C. Venditti, 2015. The role of life history traits in mammalian invasion success. Ecology Letters 18: 1099–1107.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chuang, A. & C. R. Peterson, 2016. Expanding population edges: theories, traits, and trade-offs. Global Change Biology 22: 494–512.PubMedCrossRefGoogle Scholar
  14. Chucholl, C., H. B. Stich & G. Maier, 2008. Aggressive interactions and competition for shelter between a recently introduced and an established invasive crayfish: orconectes immunis vs. O. limosus. Fundamental and Applied Limnology 172: 27–36.CrossRefGoogle Scholar
  15. Clobert, J., A. Oppliger, G. Sorci, B. Ernade, J. Swallow & T. Garland, 2000. Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, Lacerta vivipara. Functional Ecology 14: 675–684.CrossRefGoogle Scholar
  16. Colautti, R. I. & J. A. Lau, 2015. Contemporary evolution during invasions: evidence for differentiation, natural selection, and local adaptation. Molecular Ecology 24: 1999–2017.PubMedCrossRefGoogle Scholar
  17. Crandall, K. A. & S. De Grave, 2017. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology 37: 615–653.CrossRefGoogle Scholar
  18. Dick, J. T. A., C. Laverty, J. J. Lennon, D. Barrios-O’Neill, P. J. Mensink, J. Robert Britton, V. Médoc, P. Boets, M. E. Alexander, N. G. Taylor, A. M. Dunn, M. J. Hatcher, P. J. Rosewarne, S. Crookes, H. J. MacIsaac, M. Xu, A. Ricciardi, R. J. Wasserman, B. R. Ellender, O. L. F. Weyl, F. E. Lucy, P. B. Banks, J. A. Dodd, C. MacNeil, M. R. Penk, D. C. Aldridge, & J. M. Caffrey, 2017. Invader Relative Impact Potential: a new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. Journal of Applied Ecology 54:1259–1267.Google Scholar
  19. Dmitriew, C. M., 2011. The evolution of growth trajectories: what limits growth rate? Biological Reviews 86: 97–116.PubMedCrossRefGoogle Scholar
  20. Eberly, W. R., 1955. Summary of the distribution of Indiana crayfishes, including new state and county records. Proceedings of the Indiana Academy of Science 64: 281–283.Google Scholar
  21. Englund, G. & J. J. Krupa, 2000. Habitat use by crayfish in stream pools: influence of predators, depth and body size. Freshwater Biology 43: 75–83.CrossRefGoogle Scholar
  22. Fortino, K. & R. P. Creed, 2007. Abiotic factors, competition or predation: what determines the distribution of young crayfish in a watershed? Hydrobiologia 575: 301–314.CrossRefGoogle Scholar
  23. Garvey, J. E., R. A. Stein & H. M. Thomas, 1994. Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 75: 532–547.CrossRefGoogle Scholar
  24. Gherardi, F., B. Renai, P. Galeotti & D. Rubolini, 2006. Nonrandom mating, mate choice, and male-male competition in the crayfish Austropotamobius italicus, a threatened species. Archiv für Hydrobiologie 165: 557–576.CrossRefGoogle Scholar
  25. Gherardi, F., K. M. Mavuti, N. Pacini, E. Tricarico & D. M. Harper, 2011. The smell of danger: chemical recognition of fish predators by the invasive crayfish Procambarus clarkii. Freshwater Biology 56: 1567–1578.CrossRefGoogle Scholar
  26. Giraudoux, P., 2017. pgirmess: data analysis in ecology. R package version 1.6.7Google Scholar
  27. Glon, M. G., L. S. Reisinger & L. M. Pintor, 2018. Biogeographic differences between native and non-native populations of crayfish alter species coexistence and trophic interactions in mesocosms. Biological Invasions 20: 3475–3490.CrossRefGoogle Scholar
  28. Godin, J.-G. J. & S. A. Smith, 1988. A fitness cost of foraging in the guppy. Nature 333: 69–71.CrossRefGoogle Scholar
  29. Hendry, A. P., T. J. Farrugia & M. T. Kinnison, 2008. Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology 17: 20–29.PubMedCrossRefGoogle Scholar
  30. Hierro, J. L., J. L. Maron & R. M. Callaway, 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93: 5–15.CrossRefGoogle Scholar
  31. Hill, A. M. & D. M. Lodge, 1994. Diel changes in resource demand—competition and predation in species replacement among crayfishes. Ecology 75: 2118–2126.CrossRefGoogle Scholar
  32. Hudson, C. M., G. P. Brown & R. Shine, 2017. Evolutionary shifts in anti-predator responses of invasive cane toads (Rhinella marina). Behavioral Ecology and Sociobiology 71: 1–9.CrossRefGoogle Scholar
  33. Iacarella, J. C., J. T. A. Dick & A. Ricciardi, 2015. A spatio-temporal contrast of the predatory impact of an invasive freshwater crustacean. Diversity and Distributions 21: 803–812.CrossRefGoogle Scholar
  34. Iles, D. T., R. Salguero-Gómez, P. B. Adler & D. N. Koons, 2016. Linking transient dynamics and life history to biological invasion success. Journal of Ecology 104: 399–408.CrossRefGoogle Scholar
  35. Juette, T., J. Cucherousset & J. Cote, 2014. Animal personality and the ecological impacts of freshwater non-native species. Current Zoology 60: 417–427.CrossRefGoogle Scholar
  36. Kolar, C. S. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution 16: 199–204.CrossRefGoogle Scholar
  37. Kuznetsova, A., P. B. Brockhoff & R. H. B. Christensen, 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-33.Google Scholar
  38. Lenth, R. V., 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software 69: 1–33.CrossRefGoogle Scholar
  39. Lodge, D. M., M. W. Kershner, J. E. Aloi & A. P. Covich, 1994. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75: 1265–1281.CrossRefGoogle Scholar
  40. Martin III, A. L. & P. A. Moore, 2010. The influence of reproductive state on the agonistic interactions between male and female crayfish (Orconectes rusticus). Behaviour 147: 1309–1325.CrossRefGoogle Scholar
  41. Maupin, J. L. & S. E. Riechert, 2001. Superfluous killing in spiders: a consequence of adaptation to food-limited environments? Behavioral Ecology 12: 569–576.CrossRefGoogle Scholar
  42. Palkovacs, E. P. & D. M. Post, 2009. Experimental evidence that phenotypic divergence in predator foraging traits drives ecological divergence in prey communities. Ecology 90: 300–305.PubMedCrossRefGoogle Scholar
  43. Peters, B. W., 2010. Evaluating strategies for controlling invasive crayfish using human and fish predation. MS Thesis. Biological Sciences, University of Notre Dame.Google Scholar
  44. Peters, J. A. & D. M. Lodge, 2013. Habitat, predation, and coexistence between invasive and native crayfishes: prioritizing lakes for invasion prevention. Biological Invasions 15: 2489–2502.CrossRefGoogle Scholar
  45. Phillips, B. L., 2009. The evolution of growth rates on an expanding range edge. Biology Letters 5: 802–804.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Phillips, B. L., G. P. Brown & R. Shine, 2010. Life-history evolution in range-shifting populations. Ecology 91: 1617–1627.PubMedCrossRefGoogle Scholar
  47. Pintor, L. M. & A. Sih, 2009. Differences in growth and foraging behavior of native and introduced populations of an invasive crayfish. Biological Invasions 11: 1895–1902.CrossRefGoogle Scholar
  48. Pintor, L. M., A. Sih & M. L. Bauer, 2008. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117: 1629–1636.CrossRefGoogle Scholar
  49. Reale, D., D. Garant, M. M. Humphries, P. Bergeron, V. Careau & P. Montiglio, 2010. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 4051–4063.CrossRefGoogle Scholar
  50. Reisinger, L. S., A. K. Elgin, K. M. Towle, D. J. Chan & D. M. Lodge, 2017. The influence of evolution and plasticity on the behavior of an invasive crayfish. Biological Invasions 19: 815–830.CrossRefGoogle Scholar
  51. Ricciardi, A., 2007. Are modern biological invasions an unprecedented form of global change? Conservation Biology 21: 329–336.PubMedCrossRefGoogle Scholar
  52. Roth, B. M., J. C. Tetzlaff, M. L. Alexander & J. F. Kitchell, 2007. Reciprocal relationships between exotic rusty crayfish, macrophytes, and Lepomis species in northern Wisconsin lakes. Ecosystems 10: 74–85.CrossRefGoogle Scholar
  53. Roughgarden, J., 1971. Density-dependent natural selection. Ecology 52: 453–468.CrossRefGoogle Scholar
  54. Sargent, L. W. & D. M. Lodge, 2014. Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus). Evolutionary Applications 7: 949–961.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Savolainen, R., K. Westman & M. Pursiainen, 1997. Fecundity of Finnish noble crayfish, Astacus astacus, and signal crayfish, Pacifastacus leniusculus (Dana), females in various natural habitats and in culture in Finland. Freshwater Crayfish 11: 319–338.Google Scholar
  56. Segev, U., L. Burkert, B. Feldmeyer & S. Foitzik, 2017. Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient. Behavioral Ecology 28: 1149–1159.CrossRefGoogle Scholar
  57. Sih, A., 1992. Prey uncertainty and the balancing of antipredator and feeding needs. American Naturalist 139: 1052–1069.CrossRefGoogle Scholar
  58. Simon, T. P., 2001. Checklist of the crayfish and freshwater shrimp (decapoda) of Indiana. Proceedings of the Indiana Academy of Science 110: 104–110.Google Scholar
  59. Skurdal, J., D. O. Hessen, E. Garnas & L. A. Vollestad, 2011. Fluctuating fecundity parameters and reproductive investment in crayfish: driven by climate or chaos? Freshwater Biology 56: 335–341.CrossRefGoogle Scholar
  60. Stamps, J. A., 2007. Growth-mortality tradeoffs and “personality traits” in animals. Ecology Letters 10: 355–363.PubMedCrossRefGoogle Scholar
  61. Start, D. & B. Gilbert, 2017. Predator personality structures prey communities and trophic cascades. Ecology Letters 20: 366–374.PubMedCrossRefGoogle Scholar
  62. Stein, R. A., 1976. Sexual dimorphism in crayfish chelae: functional significance linked to reproductive activities. Canadian Journal of Zoology 54: 220–227.CrossRefGoogle Scholar
  63. Strauss, R. E., 1979. Reliability estimates for Ivlev’s electivity index, the forage ratio, and a proposed linear index of food selelction. Transactions of the American Fisheries Society 108: 344–352.CrossRefGoogle Scholar
  64. Strobbe, F., M. A. McPeek, M. De Block & R. Stoks, 2011. Fish predation selects for reduced foraging activity. Behavioral Ecology and Sociobiology 65: 241–247.CrossRefGoogle Scholar
  65. Taugbol, T. & J. Skurdal, 1992. Growth, mortality and moulting rate of noble crayfish, Astacus astacus L., juveniles in aquaculture experiments. Aquaculture and Fisheries Management 23: 411–420.Google Scholar
  66. Taylor, C. A., G. A. Schuster, & D. B. Wylie, 2015. Field guide to crayfishes of the midwest. Illinios Natural Hisotry Survey Manual.Google Scholar
  67. Thoma, R. F. & R. F. Jezerinac, 2000. Ohio crayfish and shrimp atlas. Ohio Biological Survey, Columbus.Google Scholar
  68. U.S. Geological Survey, 2016. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), accessed (June 13, 2019), [available on internet at].
  69. Van Petegem, K. H. P., J. Boeye, R. Stoks & D. Bonte, 2016. Spatial selection and local adaptation jointly shape life-history evolution during range expansion. The American Naturalist 188: 485–498.PubMedCrossRefGoogle Scholar
  70. Whitney, K. D. & C. A. Gabler, 2008. Rapid evolution in introduced species, “invasive traits” and recipient communities: challenges for predicting invasive potential. Diversity and Distributions 14: 569–580.CrossRefGoogle Scholar
  71. Williams, M., J. Zalasiewicz, P. K. Haff, C. Schwagerl, A. D. Barnosky & E. C. Ellis, 2015. The anthropocene biosphere. The Anthropocene Review 2: 196–219.CrossRefGoogle Scholar
  72. Wilson, K. A., J. J. Magnuson, D. M. Lodge, A. M. Hill, T. K. Kratz, W. L. Perry & T. V. Willis, 2004. A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Canadian Journal of Fisheries and Aquatic Sciences 61: 2255–2266.CrossRefGoogle Scholar
  73. Wolf, M., G. S. Van Doorn, O. Leimar & F. J. Weissing, 2007. Life-history trade-offs favour the evolution of animal personalities. Nature 447: 581–584.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wright, T. F., J. R. Eberhard, E. A. Hobson, M. L. Avery & M. A. Russello, 2010. Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology & Evolution 22: 393–404.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Central Michigan University Institute for Great Lakes ResearchMount PleasantUSA
  2. 2.The Ohio State University Department of Evolution, Ecology and Organismal BiologyColombusUSA
  3. 3.The Ohio State University School of Environment and Natural ResourcesColombusUSA
  4. 4.University of Florida Fisheries and Aquatic Sciences ProgramGainesvilleUSA

Personalised recommendations