River damming affects energy flow and food web structure: a case study from a subtropical large river

  • Huijun Ru
  • Yunfeng Li
  • Qiang Sheng
  • Liqiao Zhong
  • Zhaohui NiEmail author
Primary Research Paper


The river discontinuity caused by damming can modify both the availability of production sources and the energy flow in riverine food webs. We hypothesized the carbon source support food web would vary among the reaches in response to changing in hydrogeomorphic conditions, and this variability further caused food web structure changes. To test our hypothesis, three different river reaches in the lower Jinsha River, China, were selected and the stable isotope ratios of basal sources and dominant consumers were analyzed in three seasons 2015. The relative importance of basal sources showed temporal and spatial difference to varying degrees. Seston were the most important carbon sources in supporting all consumers and the contributions increased from upstream to downstream. Riparian C3 plants played an important supplementary role in both reaches above the dam or only in the high flow period. Dam-induced flow alteration changed the trophic basis and the composition of food webs, resulting in a difference in the food web structures, and widening but with lowest complexity food web occurred in the downstream reach. The results further confirm that the differences in the hydrogeomorphologic conditions caused by dam construction can exert potential influence on riverine food web structures.


Stable isotope SIAR model Dam construction Hydrogeomorphologic condition Fish conservation 



We thank Dr. Ziwei Shen, Kaikai Du, Chuanshun Yang, and Bin Yang for their help in the field, and Ms. Yuan Ke for the stable isotope analysis. We greatly appreciate the anonymous reviewers for their helpful comments on the earlier version of the manuscript. This study was funded by the National Natural Science Foundation of China (Grant No. 51409262) and China Three Gorges Corporation (Program No. 0799555).

Compliance with ethical standards

Conflict of interest

The authors of this manuscript have no conflicts of interest to declare.

Supplementary material

10750_2019_4130_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)


  1. Anonymous, 1976. Leptobotia elongata. In Fish Laboratory, I. O. H. (ed), Fishes in the Yangtze River. Science Press, Beijing: 158–159.Google Scholar
  2. Benedito-Cecilio, E., C. A. R. M. Araujo-lima, B. R. Forsberg, M. M. Bittencourt & L. C. Martinelli, 2000. Carbon sources of Amazonian fisheries. Fisheries Management and Ecology 7: 305–315.CrossRefGoogle Scholar
  3. Blanchette, M. L., A. M. Davis, T. D. Jardine & R. G. Pearson, 2013. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Science 33: 142–158.CrossRefGoogle Scholar
  4. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences 93: 10844–10847.CrossRefGoogle Scholar
  5. Cen, S. X., N. S. Qin & Y. Y. Li, 2012. Climatic characteristics of runoff variation in flood season in Jinsha River basin. Resources Science 34: 1538–1545. (in Chinese with English abstract).Google Scholar
  6. Chen, D. Q., J. B. Chang & H. B. Gu, 2005. Impacts of Jinsha River first stage project on ecology and environment of nature reserve and its countermeasures. Journal of Yangtze River Science Research Institute 22: 28–31. (in Chinese with English abstract).Google Scholar
  7. Clapcott, J. E. & S. E. Bunn, 2003. Can C4 plants contribute to aquatic food webs of subtropical streams? Freshwater Biology 48: 1105–1116.CrossRefGoogle Scholar
  8. Cross, W. F., C. V. Baxter, E. J. Rosi-Marshall, R. O. Hall, T. A. Kennedy, K. C. Donner, H. A. W. Kelly, S. E. Seegert, K. E. Behn & M. D. Yard, 2013. Food-web dynamics in a large river discontinuum. Ecological Monographs 83: 311–337.CrossRefGoogle Scholar
  9. DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  10. Doi, H., 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology 51: 57–64.CrossRefGoogle Scholar
  11. Doi, H., K.-H. Chang, T. Ando, H. Imai, S.-I. Nakano, A. Kajimoto & I. Katano, 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 156: 363–371.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Du, J., C. X. Shi & Y. Y. Zhou, 2010. Sediment yield pattern and its controlling factors in the Upper Yangtze River. Journal of Mountain Science 28: 22–29. (in Chinese with English abstract).Google Scholar
  13. Dunne, J. A., R. J. Williams & N. D. Martinez, 2002. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences 99: 12917–12922.CrossRefGoogle Scholar
  14. Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.Google Scholar
  15. Finlay, J. C., 2004. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography 49: 850–861.CrossRefGoogle Scholar
  16. Finlay, J. C., S. Khandwala & M. E. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.CrossRefGoogle Scholar
  17. Gao, S. B., H. Y. Tang, Y. Qiao, Z. Yang & J. S. Chen, 2013. Status of fishery resources in the mainstream of the lower reaches of Jinsha River. Journal of Hydroecology 34: 44–49. (in Chinese with English abstract).Google Scholar
  18. Hadwen, W. L., M. Spears & M. J. Kennard, 2010. Temporal variability of benthic algal δ13C signatures influences assessments of carbon flows in stream food webs. Hydrobiologia 651: 239–251.CrossRefGoogle Scholar
  19. He, Z. H., 1985. Freshwater Biology. Agriculture Press, Beijing: 1–352.Google Scholar
  20. Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495–508.CrossRefGoogle Scholar
  21. Hladyz, S., D. L. Nielsen, P. Suter & E. Krull, 2012. Temporal variations in organic carbon utilization by consumers in a lowland river. River Research and Applications 28: 513–528.CrossRefGoogle Scholar
  22. Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2007. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10: 1019–1033.CrossRefGoogle Scholar
  23. Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2008. Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs. Oikos 117: 984–995.CrossRefGoogle Scholar
  24. Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. Bioscience 64: 870–882.CrossRefGoogle Scholar
  25. Jiang, Y., S. X. Fen, W. Ma & C. Li, 2009. Analysis of the impact of cascade hydropower development on fish in the lower Jinsha River. In Zhou, X. D. (ed.), Advances in Hydraulics and Hydroinformatics. Xi’an Jiaotong University Press, Xian: 63–69. (in Chinese).Google Scholar
  26. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  27. Li, L., Q. W. Wei, J. M. Wu, H. Zhang, Y. Liu & X. Xie, 2015. Diet of Leptobotia elongata revealed by stomach content analysis and inferred from stable isotope signatures. Environmental Biology of Fishes 98: 1965–1978.CrossRefGoogle Scholar
  28. Liu, X. Q., 2006. Food composition and food webs of zoobenthos in Yangtze Lakes. Doctoral dissertation, Institute of Hydrobiology, Chinese Academy of Sciences.Google Scholar
  29. Lu, L., Q. Wang, G. Q. Wang, Y. L. Liu & C. S. Liu, 2016. Trend of climate change over the recent 60 years and its hydrological responses for Jinsha River basin. Journal of North China University of Water Resources and Electric Power (Natural Sciences Edition) 37: 16–21. (in Chinese with English abstract).Google Scholar
  30. McCann, K. S., 2000. The diversity–stability debate. Nature 405: 228.PubMedCrossRefPubMedCentralGoogle Scholar
  31. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  32. Mor, J.-R., A. Ruhí, E. Tornés, H. Valcárcel, I. Muñoz & S. Sabater, 2018. Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment 625: 301–310.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Morse, J. C., L. Yang & L. Tian, 1994. Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing.Google Scholar
  34. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.CrossRefGoogle Scholar
  35. Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.CrossRefGoogle Scholar
  36. Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: e9672.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  38. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.PubMedCrossRefGoogle Scholar
  39. Pimm, S. L., J. H. Lawton & J. E. Cohen, 1991. Food web patterns and their consequences. Nature 350: 669.CrossRefGoogle Scholar
  40. Pingram, M. A., K. J. Collier, D. P. Hamilton, B. J. Hicks & B. O. David, 2014. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729: 107–131.CrossRefGoogle Scholar
  41. Poff, N. L. & J. K. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.CrossRefGoogle Scholar
  42. Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.CrossRefGoogle Scholar
  43. Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
  44. Power, M. E., W. E. Dietrich & J. C. Finlay, 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20: 887–895.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Power, M. E., J. R. Holomuzki & R. L. Lowe, 2013. Food webs in Mediterranean rivers. Hydrobiologia 719: 119–136.CrossRefGoogle Scholar
  46. Reid, D. J., G. P. Quinn, P. Lake & P. Reich, 2008. Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: a stable isotope study. Freshwater Biology 53: 2036–2050.CrossRefGoogle Scholar
  47. Riede, J. O., B. C. Rall, C. Banasek-Richter, S. A. Navarrete, E. A. Wieters, M. C. Emmerson, U. Jacob & U. Brose, 2010. Scaling of food-web properties with diversity and complexity across ecosystems. In Woodward, G. (ed.), Advances in Ecological Research, Vol. 42. Elsevier Academic Press, Burlington: 139–170.Google Scholar
  48. Roach, K. A., 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32: 283–298.CrossRefGoogle Scholar
  49. Roach, K. A., K. O. Winemiller & S. E. Davis, 2014. Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshwater Biology 59: 1278–1293.CrossRefGoogle Scholar
  50. Ruhí, A., I. Muñoz, E. Tornés, R. J. Batalla, D. Vericat, L. Ponsatí, V. Acuña, D. von Schiller, R. Marcé & G. Bussi, 2016. Flow regulation increases food-chain length through omnivory mechanisms in a Mediterranean river network. Freshwater Biology 61: 1536–1549.CrossRefGoogle Scholar
  51. Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martinez, H. Rantala, T. N. Romanuk, D. B. Stouffer & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution 27: 689–697.CrossRefGoogle Scholar
  53. Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos: 305–308.Google Scholar
  54. Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.CrossRefGoogle Scholar
  55. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  56. Udy, J. W. & S. E. Bunn, 2001. Elevated delta N-15 values in aquatic plants from cleared catchments: why? Marine and Freshwater Research 52: 347–351.CrossRefGoogle Scholar
  57. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.Google Scholar
  58. Vörösmarty, C. J., P. B. Mcintyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan & C. R. Liermann, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.CrossRefGoogle Scholar
  59. Wang, J., B. Gu, J. Huang, X. Han, G. Lin, F. Zheng & Y. Li, 2014. Terrestrial contributions to the aquatic food web in the middle Yangtze River. PLoS ONE 9: e102473.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Winemiller, K. O., D. J. Hoeinghaus, A. A. Pease, P. C. Esselman, R. L. Honeycutt, D. Gbanaador, E. Carrera & J. Payne, 2011. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Research and Applications 27: 791–803.CrossRefGoogle Scholar
  61. Woodland, R. J., P. Magnan, H. Glémet, M. A. Rodríguez & G. Cabana, 2012. Variability and directionality of temporal changes in δ 13 C and δ 15 N of aquatic invertebrate primary consumers. Oecologia 169: 199–209.PubMedCrossRefGoogle Scholar
  62. Woodward, G. & A. G. Hildrew, 2002. Food web structure in riverine landscapes. Freshwater Biology 47: 777–798.CrossRefGoogle Scholar
  63. Xu, Y. G., Z. L. Deng, Z. T. Yu & X. J. Wei, 1981. The biological aspects of coreius heterodon (Bleeker) and the effects of proposed Sanxia Hydroelectirc Project on its resource. Acta Hydrobiologica Sinica 7: 271–294. (in Chinese with English abstract).Google Scholar
  64. Xu, C. J., K. X. Fan & T. G. Xiao, 2010. Runoff characteristics and variation tendency of Jinsha River Basin. Yangtze River 41: 10–14. (in Chinese with English abstract).Google Scholar
  65. Yang, J. & J. Dai, 2016. Characteristics analysis of the water pollutants in the Panzhihua secton of Jinshajiang River. Environmental Science Survey 14: 61–66. (in Chinese with English abstract).Google Scholar
  66. Zeug, S. C. & K. O. Winemiller, 2008. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89: 1733–1743.PubMedCrossRefGoogle Scholar
  67. Zheng, J. X., S. B. Gao, S. Y. Chi, J. Hu, S. X. Li & J. X. Hu, 2014. Hydro-ecological assessment and protection strategies of Jinsha river downstream. Environmental Science & Technology 9: 174–179. (in Chinese with English abstract).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fishery Eco-Environment Monitoring Center in Middle and Upper Reaches of Yangtze River of Ministry of Agriculture and Rural AffairsYangtze River Fisheries Research Institute, Chinese Academy of Fisheries ScienceWuhanChina
  2. 2.Zhejiang Province Key Laboratory of Aquatic Resources Conservation and Development, College of Life SciencesHuzhou UniversityHuzhouChina

Personalised recommendations