Advertisement

Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses

  • Monica Torres-RuizEmail author
  • John D. Wehr
Primary Research Paper

Abstract

Our study characterized the food web of a shaded stream to investigate consumer food choices and food source quality. We measured fatty acids (FA) and elemental carbon (C), nitrogen (N), and phosphorus (P) of autochthonous and allochthonous resources and macroinvertebrates (Hydropsyche sp., Ephemerella sp., Rhyacophila sp., and crayfish-Cambaridae). We examined trophic links using FAs and identified food source quality based on essential fatty acids (EFAs) and elemental nutrients. Autochthonous food sources had greater EFA content (20:5ω3 in periphyton, 20:4ω6 in bryophyte Hygrohypnum) than terrestrial matter. FAs confirmed the grazing nature of Ephemerella. Periphyton may release this invertebrate from N and P limitation, and FA biochemical constraints. Limitation by elemental nutrients, but not FAs, may exist for Hydropsyche if feeding solely on transported matter. Crayfish FA signature suggests consumption of the bryophyte Hygrohypnum as well as terrestrial matter. Our data demonstrate that autochthonous sources are crucial for many invertebrates in shaded streams, despite limited light availability. However, detrital food sources can also be important and their contribution to stream food webs should not be overlooked. Our study highlights the importance of measuring nutrient and biochemical constraints in order to understand factors driving secondary production in streams.

Keywords

Algae Benthic invertebrates Autochthonous Allochthonous Nutritional constraints 

Notes

Acknowledgements

We thank Fordham University, The Louis Calder Center, and the New York State Biodiversity Research Institute for funding. We thank the anonymous reviewers for their insightful comments which greatly improved the final version of the article.

Supplementary material

10750_2019_4126_MOESM1_ESM.docx (284 kb)
Supplementary material 1 (DOCX 283 kb)

References

  1. Arce-Funck, J. A., A. Bec, F. Perrière, V. Felten & M. Danger, 2015. Aquatic hyphomycetes: a potential source of polyunsaturated fatty acids in detritus-based stream food webs. Fungal Ecology 13: 205–210.CrossRefGoogle Scholar
  2. Atkinson, C. L., K. A. Capps, A. T. Rugenski & M. J. Vanni, 2017. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biological Reviews 92: 2003–2023.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Back, J. A. & R. S. King, 2013. Sex and size matter: ontogenetic patterns of nutrient content of aquatic insects. Freshwater Science 32: 837–848.CrossRefGoogle Scholar
  4. Barbour, M.T., J. Gerritsen, B.D. Snyder, & J.B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA/841-B-99-002. U.S. EPA, Office of Water, Washington, D.C. 197 pp. plus appendices.Google Scholar
  5. Bec, A., C. Desvilettes, A. Véra, D. Fontvieille & G. Bourdier, 2003. Nutritional value of different food sources for the benthic Daphnidae Simocephalus vetulus: role of fatty acids. Archiv für Hydrobiologie 156: 145–163.CrossRefGoogle Scholar
  6. Bec, A., D. Martin-Creuzburg & E. von Elert, 2006. Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnology and Oceanography 51: 1699–1707.CrossRefGoogle Scholar
  7. Bec, A., M. E. Perga, A. Koussoroplis, G. Bardoux, C. Desvilettes, G. Bourdier & A. Mariotti, 2011. Assessing the reliability of fatty acid–specific stable isotope analysis for trophic studies. Methods in Ecology and Evolution 2: 651–659.CrossRefGoogle Scholar
  8. Blomquist, G. J., C. E. Borgeson & M. Vundla, 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochemistry 21: 99–106.CrossRefGoogle Scholar
  9. Bowden, W., D. Arscott, D. Pappathanasi, J. Finlay, J. Glime, J. LaCroix, C.-L. Liao, A. Hershey, T. Lampella & B. Peterson, 1999. Roles of bryophytes in stream ecosystems. Journal of the North American Benthological Society 18: 151–184.CrossRefGoogle Scholar
  10. Brett, M.T., & D.C. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38 (3):483–499.CrossRefGoogle Scholar
  11. Brett, M. T., S. E. Bunn, S. Chandra, A. W. Galloway, F. Guo, M. J. Kainz, P. Kankaala, D. C. Lau, T. P. Moulton & M. E. Power, 2017. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62: 833–853.CrossRefGoogle Scholar
  12. Bumpers, P. M., A. D. Rosemond, J. C. Maerz & J. P. Benstead, 2017. Experimental nutrient enrichment of forest streams increases energy flow to predators along greener food-web pathways. Freshwater Biology 62: 1794–1805.CrossRefGoogle Scholar
  13. Burns, D., T. Vitvar, J. McDonnell, J. Hassett, J. Duncan & C. Kendall, 2005. Effects of suburban development on runoff generation in the Croton River basin, New York, USA. Journal of Hydrology 311 (1–4):266–281.CrossRefGoogle Scholar
  14. Cashman, M. J., F. Pilotto, G. L. Harvey, G. Wharton & M. T. Pusch, 2016. Combined stable-isotope and fatty-acid analyses demonstrate that large wood increases the autochthonous trophic base of a macroinvertebrate assemblage. Freshwater Biology 61: 549–564.CrossRefGoogle Scholar
  15. Collins, S. M., T. J. Kohler, S. A. Thomas, W. W. Fetzer & A. S. Flecker, 2016. The importance of terrestrial subsidies in stream food webs varies along a stream size gradient. Oikos 125: 674–685.CrossRefGoogle Scholar
  16. Crenier, C., J. Arce-Funck, A. Bec, E. Billoir, F. Perrière, J. Leflaive, F. Guérold, V. Felten & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology 62: 1155–1167.CrossRefGoogle Scholar
  17. Cross, W. F., J. P. Benstead, A. D. Rosemond & J. Bruce Wallace, 2003. Consumer-resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.CrossRefGoogle Scholar
  18. Cross, W. F., J. P. Benstead, P. C. Frost & S. A. Thomas, 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895–1912.CrossRefGoogle Scholar
  19. D’Abramo, L. R. & S. S. Sheen, 1993. Polyunsaturated fatty acid nutrition in juvenile freshwater prawn Macrobrachium rosenbergii. Aquaculture 115: 63–86.CrossRefGoogle Scholar
  20. Danger, M., J. Arce Funck, S. Devin, J. Heberle & V. Felten, 2013. Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology 27: 807–815.CrossRefGoogle Scholar
  21. Demi, L. M., J. P. Benstead, A. D. Rosemond & J. C. Maerz, 2018. Litter P content drives consumer production in detritus-based streams spanning an experimental N: P gradient. Ecology 99: 347–359.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Desvilettes, C., G. Bourdier, J. C. Breton & P. Combrouze, 1994. Fatty acids as organic markers for the study of trophic relationships in littoral cladoceran communities of a pond. Journal of Plankton Research 16: 643–659.CrossRefGoogle Scholar
  23. Erdozain, M., K. Kidd, D. Kreutzweiser & P. Sibley, 2019. Increased reliance of stream macroinvertebrates on terrestrial food sources linked to forest management intensity. Ecological Applications 29: e01889.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Filipiak, M., 2016. Pollen stoichiometry may influence detrital terrestrial and aquatic food webs. Frontiers in Ecology and Evolution 4: 138.CrossRefGoogle Scholar
  25. Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109: 18–28.CrossRefGoogle Scholar
  26. Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9: 774–779.PubMedCrossRefPubMedCentralGoogle Scholar
  27. García, L., I. Pardo, W. F. Cross & J. S. Richardson, 2017. Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream. Aquatic Sciences 79: 941–952.CrossRefGoogle Scholar
  28. Georgian, T. & J. H. Thorp, 1992. Effects of microhabitat selection on feeding rates of net-spinning caddisfly larvae. Ecology 73: 229–240.CrossRefGoogle Scholar
  29. Glibert, P. M., J. J. Middelburg, J. W. McClelland & M. Jake Vander Zanden, 2019. Stable isotope tracers: enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnology and Oceanography 64: 950–981.CrossRefGoogle Scholar
  30. Guo, F., M. J. Kainz, F. Sheldon & S. E. Bunn, 2016. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia 181: 449–462.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Guo, F., S. E. Bunn, M. T. Brett & M. J. Kainz, 2017. Polyunsaturated fatty acids in stream food webs high dissimilarity among producers and consumers. Freshwater Biology 62: 1325–1334.CrossRefGoogle Scholar
  32. Guo, F., S. E. Bunn, M. T. Brett, B. Fry, H. Hager, X. Ouyang & M. J. Kainz, 2018. Feeding strategies for the acquisition of high-quality food sources in stream macroinvertebrates: collecting, integrating, and mixed feeding. Limnology and Oceanography 63: 1964–1978.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Halvorson, H. M., J. T. Scott, A. J. Sanders & M. A. Evans-White, 2015. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshwater Science 34: 508–518.CrossRefGoogle Scholar
  34. Hanna, V. S. & E. A. A. Hafez, 2018. Synopsis of arachidonic acid metabolism: a review. Journal of Advanced Research 11: 23–32.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hanson, B. J., K. W. Cummins, A. S. Cargill & R. R. Lowry, 1985. Lipid content, fatty acid composition and the effect of diet on fats of aquatic insects. Comparative Biochemistry and Physiology B 80: 257–276.CrossRefGoogle Scholar
  36. Harlıoğlu, M. M., K. Köprücü, A. G. Harlıoğlu, Ö. Yılmaz, S. Mişe Yonar, S. Aydın & T. Çakmak Duran, 2015. Effects of dietary n-3 polyunsaturated fatty acids on the nutritional quality of abdomen meat and hepatopancreas in a freshwater crayfish (Astacus leptodactylus). Journal of Food Composition and Analysis 41: 144–150.CrossRefGoogle Scholar
  37. Hazel, J. R., 1995. Thermal Aaaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology 57: 19–42.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hellmann, C., B. Wissel & C. Winkelmann, 2013. Omnivores as seasonally important predators in a stream food web. Freshwater Science 32: 548–562.CrossRefGoogle Scholar
  39. Hershey, A. E., R. M. Northington, J. C. Finlay & B. J. Peterson, 2017. Chapter 23—stable isotopes in stream food webs. In Lamberti, G. A. & F. R. Hauer (eds), Methods in Stream Ecology, 3rd ed. Academic Press, New York: 3–20.CrossRefGoogle Scholar
  40. Hill, W. R., J. Rinchard & S. Czesny, 2011. Light, nutrients and the fatty acid composition of stream periphyton. Freshwater Biology 56: 1825–1836.CrossRefGoogle Scholar
  41. Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.CrossRefGoogle Scholar
  42. Ishikawa, N., M. Yamane, H. Suga, N. Ogawa, Y. Yokoyama & N. Ohkouchi, 2015. Chlorophyll a-specific δ 14 C, δ 13 C and δ 15 N values in stream periphyton: implications for aquatic food web studies. Biogeosciences 12: 6781–6789.CrossRefGoogle Scholar
  43. Kalachova, G., M. Gladyshev, N. Sushchik & O. Makhutova, 2011. Water moss as a food item of the zoobenthos in the Yenisei River. Open Life Sciences 6: 236–245.CrossRefGoogle Scholar
  44. Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series 120: 231–241.CrossRefGoogle Scholar
  45. Lancaster, J., D. C. Bradley, A. Hogan & S. Waldron, 2005. Intraguild omnivory in predatory stream insects. Journal of Animal Ecology 74: 619–629.CrossRefGoogle Scholar
  46. Lauridsen, R. B., F. K. Edwards, W. F. Cross, G. Woodward, A. G. Hildrew & J. I. Jones, 2014. Consequences of inferring diet from feeding guilds when estimating and interpreting consumer-resource stoichiometry. Freshwater Biology 59: 1497–1508.CrossRefGoogle Scholar
  47. Lemoine, N. P., S. T. Giery & D. E. Burkepile, 2014. Differing nutritional constraints of consumers across ecosystems. Oecologia 174: 1367–1376.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Liess, A. & H. Hillebrand, 2006. Role of nutrient supply in grazer-periphyton interactions: reciprocal influences of periphyton and grazer nutrient stoichiometry. Journal of the North American Benthological Society 25: 632–642.CrossRefGoogle Scholar
  49. Lu, Y. H., E. A. Canuel, J. E. Bauer & R. Chambers, 2014. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Sciences 76: 419–436.CrossRefGoogle Scholar
  50. Magoulick, D. D. & G. L. Piercey, 2016. Trophic overlap between native and invasive stream crayfish. Hydrobiologia 766: 237–246.CrossRefGoogle Scholar
  51. Masclaux, H., M.-E. Perga, M. Kagami, C. Desvilettes, G. Bourdier & A. Bec, 2013. How pollen organic matter enters freshwater food webs. Limnology and Oceanography 58: 1185–1195.CrossRefGoogle Scholar
  52. McWilliam-Hughes, S. M., T. D. Jardine & R. A. Cunjak, 2009. In stream C sources for primary consumers in two temperate, oligotrophic rivers: possible evidence of bryophytes as a food source. Journal of the North American Benthological Society 28: 733–743.CrossRefGoogle Scholar
  53. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall Hunt, Dubuque.Google Scholar
  54. Moe, S. J., R. S. Stelzer, M. R. Forman, W. S. Harpole, T. Daufresne & T. Yoshida, 2005. Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 109: 29–39.CrossRefGoogle Scholar
  55. Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition. Journal of the North American Benthological Society 19: 145–157.CrossRefGoogle Scholar
  56. Muller-Navarra, D. C., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv fur Hydrobiologie 132: 297–307.Google Scholar
  57. Muller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.PubMedCrossRefGoogle Scholar
  58. Napolitano, G. E., 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems. In Arts, M. T. & B. C. Wainman (eds), Lipids in Freshwater Ecosystems. Springer, New York: 21–44.CrossRefGoogle Scholar
  59. Napolitano, G. E., R. J. Pollero, A. M. Gayoso, B. A. MacDonald & R. J. Thompson, 1997. Fatty acids as trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25: 739–755.CrossRefGoogle Scholar
  60. O’Brien, P. J. & J. D. Wehr, 2010. Periphyton biomass and ecological stoichiometry in streams within an urban to rural land-use gradient. In Stevenson, R. J. & S. Sabater (eds), Global Change and River Ecosystems-Implications for Structure, Function and EcosystemServices. Springer, Netherlands: 89–105.Google Scholar
  61. Persson, J., P. Fink, A. Goto, J. M. Hood, J. Jonas & S. Kato, 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119: 741–751.CrossRefGoogle Scholar
  62. Ravet, J. L., J. Persson & M. T. Brett, 2012. Threshold dietary polyunsaturated fatty acid concentrations for Daphnia pulex growth and reproduction. Inland Waters 2: 199–209.CrossRefGoogle Scholar
  63. Risse-Buhl, U., M. Karsubke, J. Schlief, C. Baschien, M. Weitere & M. Mutz, 2012. Aquatic protists modulate the microbial activity associated with mineral surfaces and leaf litter. Aquatic Microbial Ecology 66: 133–147.CrossRefGoogle Scholar
  64. Rosi-Marshall, E. J., K. L. Vallis, C. V. Baxter & J. M. Davis, 2016. Retesting a prediction of the river continuum concept: autochthonous versus allochthonous resources in the diets of invertebrates. Freshwater Science 35: 534–543.CrossRefGoogle Scholar
  65. Sabater, S., J. Artigas, A. Gaudes, I. Munoz, G. Urrea & A. M. Romani, 2011. Long-term moderate nutrient inputs enhance autotrophy in a forested mediterranean stream. Freshwater Biology 56: 1266–1280.CrossRefGoogle Scholar
  66. Santonja, M., L. Pellan & C. Piscart, 2018. Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecology and Evolution 8: 2542–2553.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Saoud, I., A. Garza De Yta & J. Ghanawi, 2012. A review of nutritional biology and dietary requirements of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquaculture Nutrition 18: 349–368.CrossRefGoogle Scholar
  68. Sikora, A. B., T. Petzoldt, P. Dawidowicz & E. von Elert, 2016. Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size? Oecologia 182: 405–417.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sitters, J., C. L. Atkinson, N. Guelzow, P. Kelly & L. L. Sullivan, 2015. Spatial stoichiometry: cross-ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos 124: 920–930.CrossRefGoogle Scholar
  70. Small, G. E. & C. M. Pringle, 2010. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia 162: 581–590.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Snyder, M. N., G. E. Small & C. M. Pringle, 2015. Diet-switching by omnivorous freshwater shrimp diminishes differences in nutrient recycling rates and body stoichiometry across a food quality gradient. Freshwater Biology 60: 526–536.CrossRefGoogle Scholar
  72. Sokal, R. R. & F. Rohlf, 1995. Biometry: the principles and practice of statistics in biological research. Freeman and Company, New York.Google Scholar
  73. Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 754–758.CrossRefGoogle Scholar
  74. Sperfeld, E. & A. Wacker, 2012. Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs. Freshwater Biology 57: 497–508.CrossRefGoogle Scholar
  75. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  76. Sushchik, N. N., M. I. Gladyshev, A. V. Moskvichova, O. N. Makhutova & G. S. Kalachova, 2003. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river. Comparative Biochemistry and Physiology 134: 111–122.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tamura, S. & T. Kagaya, 2019. Food habits of invertebrate grazers in a forested stream: variations according to taxonomic affiliation, flow habitat, and body size. Hydrobiologia 841: 109–120.CrossRefGoogle Scholar
  78. Taube, R., L. Ganzert, H.-P. Grossart, G. Gleixner & K. Premke, 2018. Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes. Science of the Total Environment 610: 469–481.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.CrossRefGoogle Scholar
  80. Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.CrossRefGoogle Scholar
  81. Thut, R. N., 1969. Feeding habits of larvae of seven Rhyacophila (Trichoptera: Rhyacophilidae) species with notes on other life-history features. Annals of the Entomological Society of America 62: 894–898.CrossRefGoogle Scholar
  82. Torres-Ruiz, M. & J. D. Wehr, 2010. Changes in the nutritional quality of decaying leaf litter in a stream based on fatty acid content. Hydrobiologia 651: 265–278.CrossRefGoogle Scholar
  83. Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2007. Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. Journal of the North American Benthological Society 26: 509–522.CrossRefGoogle Scholar
  84. Torres-Ruiz, M., J. D. Wehr & A. A. Perrone, 2010. Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Journal of the North American Benthological Society 29: 803–813.CrossRefGoogle Scholar
  85. Twining, C. W., J. T. Brenna, N. G. Hairston Jr. & A. S. Flecker, 2016. Highly unsaturated fatty acids in nature: what we know and what we need to learn. Oikos 125: 749–760.CrossRefGoogle Scholar
  86. Twining, C. W., D. C. Josephson, C. E. Kraft, J. T. Brenna, P. Lawrence & A. S. Flecker, 2017. Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: insights from fatty acids. Freshwater Science 36: 877–892.CrossRefGoogle Scholar
  87. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries & Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  88. Volk, C. & P. Kiffney, 2012. Comparison of fatty acids and elemental nutrients in periphyton, invertebrates, and cutthroat trout (Oncorhynchus clarki) in conifer and alder streams of western Washington state. Aquatic Ecology 46: 85–99.CrossRefGoogle Scholar
  89. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.CrossRefGoogle Scholar
  90. Weers, P. M. M. & R. D. Gulati, 1997. Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Chlamydomonas reinhardtii. Limnology and Oceanography 42: 1584–1589.CrossRefGoogle Scholar
  91. Wehr, J. D., A. Empain, C. Mouvet, P. J. Say & B. A. Whitton, 1983. Methods for processing aquatic mosses used as monitors of heavy metals. Water Research 17: 985–992.CrossRefGoogle Scholar
  92. Whorley, S. B. & J. D. Wehr, 2016. Connecting algal taxonomic information to essential fatty acid content in agricultural streams. Phycologia 55: 531–542.CrossRefGoogle Scholar
  93. Yohannes, E. & K.-O. Rothhaupt, 2018. Dietary nutrient allocation to somatic tissue synthesis in emerging subimago freshwater mayfly Ephemera danica. BMC Ecology 18: 57.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhang, P., R. F. van den Berg, C. H. van Leeuwen, B. A. Blonk & E. S. Bakker, 2018. Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry. PLoS ONE 13: e0204116.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Louis Calder Center - Biological Field Station and Department of Biological SciencesFordham UniversityArmonkUSA
  2. 2.National Center for Environmental Health (CNSA), Institute of Health Carlos IIIMadridSpain

Personalised recommendations