Advertisement

Community reassembly after river regulation: rapid loss of fish diversity and the emergence of a new state

  • Phamela Bernardes PerônicoEmail author
  • Carlos Sérgio Agostinho
  • Rodrigo Fernandes
  • Fernando Mayer Pelicice
Primary Research Paper

Abstract

Hydroelectric expansion has affected the functioning of most tropical rivers in the world. However, community reassembly in Neotropical impoundments remains poorly understood, because long-term studies are incipient. In this context, we evaluated temporal changes in fish diversity before and after the construction of Peixe Angical Dam, Upper Tocantins River, Amazon Basin. Specifically, we investigated changes in taxonomic (richness, abundance and species composition) and functional diversity (trait richness and composition) over a period of a decade. Fish assemblages were sampled at five sites along the river, between 2004 and 2014 (before and after river regulation). As predicted, taxonomic and trait richness declined in the impoundment, and the composition shifted over the years, with increasing dissimilarity between sites. We also observed significant changes in species abundance and trait composition. However, changes were abrupt and a novel community state emerged after the fifth year of the impoundment. After this period, richness and abundance tended to stabilize at low levels, with different species/trait composition when compared to the pre-damming period. Our results indicate that major changes in community structure occurred during the first years of the impoundment, with relevant losses in taxonomic and functional diversity, along with a rapid change towards a new state.

Keywords

Dam Environmental filters Functional traits Impoundment Neotropical 

Notes

Acknowledgements

We thank colleagues from the Núcleo de Estudos Ambientais (Universidade Federal do Tocantins) for their assistance in field and laboratory work (2004–2007 period), Biota for providing data (2011–2014 period), and Enerpeixe S.A. for financial funding. CNPq provided a scholarship for P.B.P. and a research grant for F.M.P. We thank Luis M. Bini (Editor) and anonymous reviewers for providing comments and corrections.

Supplementary material

10750_2019_4117_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 15 kb)
10750_2019_4117_MOESM2_ESM.docx (37 kb)
Supplementary material 2 (DOCX 37 kb)
10750_2019_4117_MOESM3_ESM.docx (23 kb)
Supplementary material 3 (DOCX 23 kb)
10750_2019_4117_MOESM4_ESM.docx (16 kb)
Supplementary material 4 (DOCX 16 kb)

References

  1. Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in Neotropical reservoirs, and prognoses on aging. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Applications. Backhuys Publishers, Leiden: 227–265.Google Scholar
  2. Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. EDUEM, Maringá.Google Scholar
  3. Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68: 1119–1132.CrossRefGoogle Scholar
  4. Agostinho, C. S., F. M. Pelicice & E. E. Marques, 2009. Reservatório de Peixe Angical: Bases ecológicas para o manejo da ictiofauna. RiMa Editora, São Carlos.Google Scholar
  5. Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.CrossRefGoogle Scholar
  6. Angulo-Valencia, M. A., A. A. Agostinho, H. I. Suzuki, K. D. G. Luz-Agostinho & C. S. Agostinho, 2016. Impoundments affect fish reproduction regardless of reproductive strategy. Lakes and Reservoirs: Research and Management 21: 362–374.CrossRefGoogle Scholar
  7. Arantes, C. C., D. B. Fitzgerald, D. J. Hoeinghaus & K. O. Winemiller, 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability 37: 28–40.CrossRefGoogle Scholar
  8. Araújo, E. S., E. E. Marques, I. S. Freitas, A. L. Neuberger, R. Fernandes & F. M. Pelicice, 2013. Changes in distance decay relationships after river regulation: similarity among fish assemblages in a large Amazonian river. Ecology of Freshwater Fish 22: 543–552.CrossRefGoogle Scholar
  9. Barthem, R. B., M. C. L. B. Ribeiro & M. Petrere Junior, 1991. Life strategies of some long-distance migratory catfish in relation to hydroelectric dams in the Amazon Basin. Biological Conservation 55: 339–345.CrossRefGoogle Scholar
  10. Branquinho, A. A. & D. Brito, 2016. Impact of dams on global biodiversity: a scienciometric Analysis. Neotropical Biology and Conservation 11(2): 101–109.CrossRefGoogle Scholar
  11. Cadotte, M. W., K. Carscadden & N. Mirotchnik, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48: 1079–1087.CrossRefGoogle Scholar
  12. Cardoso, P., F. Rigal, J. C. Carvalho, M. Fortelius, P. A. V. Borges, J. Podani & D. Schmera, 2014. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. Journal of Biogeography 41: 749–761.CrossRefGoogle Scholar
  13. Cardoso, P., F. Rigal & J. C. Carvalho, 2018. BAT: Biodiversity Assessment Tools. R Package Version 1.6.0.Google Scholar
  14. Castello, L., D. G. McGrath, L. L. Hess, M. T. Coe, P. A. Lefebvre, P. Petry, M. N. Macedo, V. F. Reno & C. C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217–229.CrossRefGoogle Scholar
  15. Cella-Ribeiro, A., C. R. C. Doria, J. Dutka-Gianelli, H. Alves & G. Torrente-Vilara, 2017. Temporal fish community responses to two cascade run-of-river dams in the Madeira River, Amazon basin. Ecohydrology 10: e1889.CrossRefGoogle Scholar
  16. Cunico, A. M., J. D. Allan & A. A. Agostinho, 2011. Functional convergence of fish assemblages in urban streams of Brazil and the United States. Ecological Indicators 11: 1354–1359.CrossRefGoogle Scholar
  17. Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, G. Larocque, P. Legendre & H. H. Wagner, 2016. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.0-4.Google Scholar
  18. Froese, R. & D. Pauly, 2016. FishBase. FAO, Rome. http://fishbase.org.
  19. Fu, H., J. Zhong, G. Yuan, L. Ni, P. Xie & T. Cao, 2014. Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake. Ecology and Evolution 4(9): 1516–1523.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gomes, L. C. & L. E. Miranda, 2001. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the Upper Paraná River Basin. Regulated Rivers: Research & Management 17: 67–76.CrossRefGoogle Scholar
  21. Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.CrossRefGoogle Scholar
  22. Helfman, G. S., B. B. Collette & D. E. Facey, 2009. The Diversity of Fishes, 2nd ed. Wiley-Blackwell, Oxford.Google Scholar
  23. Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.CrossRefGoogle Scholar
  24. Hoeinghaus, D. J., A. A. Agostinho, L. C. Gomes, F. M. Pelicice, E. K. Okada, J. D. Latini, E. A. L. Kashiwaki & K. O. Winemiller, 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology 23: 1222–1231.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller & J. M. Levine, 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592–599.CrossRefGoogle Scholar
  26. Laliberté, E., P. Legendre & B. Shipley, 2014. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R Package Version 1.0-12.Google Scholar
  27. Legendre, P., M. De Cáceres & D. Bocard, 2010. Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91: 262–272.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lenhardt, M., G. Markovic & Z. Gacic, 2009. Decline in the index of biotic integrity of the fish assemblage as a response to reservoir aging. Water Resources and Management 23: 1713–1723.CrossRefGoogle Scholar
  29. Leveque, C., T. Oberdorff, D. Paugy, M. L. J. Stiassny & P. A. Tedesco, 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.CrossRefGoogle Scholar
  30. Lima, A. C., C. S. Agostinho, D. Sayanda, F. M. Pelicice, A. M. V. M. Soares & K. A. Monaghan, 2016. The rise and fall of fish diversity in a Neotropical river after impoundment. Hydrobiologia 763(1): 207–221.CrossRefGoogle Scholar
  31. Lima, A. C., D. Sayanda, C. S. Agostinho, A. L. Machado, A. M. V. M. Soares & K. A. Monaghan, 2018. Using a trait-based approach to measure the impact of dam closure in fish communities of a Neotropical River. Ecology of Freshwater Fish 27: 408–420.CrossRefGoogle Scholar
  32. Logez, M., P. Bady, A. Melcher & D. Pont, 2013. A continental-scale analysis of fish assemblage functional structure in European Rivers. Ecography 36: 80–91.CrossRefGoogle Scholar
  33. Loures, R. C. & P. S. Pompeu, 2018. Long-term study of reservoir cascade in south-eastern Brazil reveals spatio-temporal gradient in fish assemblages. Marine & Freshwater Research 69(12): 1983–1994.CrossRefGoogle Scholar
  34. Mazumder, D., R. J. Williams, L. Wen, N. Saintilan & C. T. Walsh, 2016. Impoundment constraint of fish niche diversity in a temperate Australian river. Hydrobiologia 771: 195–206.CrossRefGoogle Scholar
  35. Melo, C. E., F. A. Machado & V. Pinto-Silva, 2004. Feeding habits of fish from a stream in the savanna of Central Brazil, Araguaia Basin. Neotropical Ichthyology 2(1): 37–44.CrossRefGoogle Scholar
  36. Mérona, B. & J. Rankin-de-Mérona, 2004. Food resource partitioning in a fish community of the Central Amazon floodplain. Neotropical Ichthyology 2(2): 75–84.CrossRefGoogle Scholar
  37. Mérona, B., G. M. Santos & R. G. Almeida, 2001. Short term effects of Tucurui Dam (Amazonia, Brazil) on the trophic organization of fish communities. Environmental Biology of Fishes 60: 375–392.CrossRefGoogle Scholar
  38. Mol, J. H., B. Mérona, P. E. Ouboter & S. Sahdew, 2007. The fish fauna of Brokopondo Reservoir, Suriname, during 40 years of impoundment. Neotropical Ichthyology 5: 351–368.CrossRefGoogle Scholar
  39. Mouchet, M. A., S. Villéger, N. W. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.CrossRefGoogle Scholar
  40. Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason & D. R. Bellwood, 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution 28(3): 167–177.CrossRefGoogle Scholar
  41. Neuberger, A. L., E. E. Marques, C. S. Agostinho & F. M. Pelicice, 2009. Variações espaciais na atividade reprodutiva de peixes na área de influência do reservatório de Peixe Angical. In Agostinho, C. S., F. M. Pelicice & E. E. Marques (eds), Reservatório de Peixe Angical: bases ecológicas para o manejo da ictiofauna. RiMa Editora, São Carlos: 59–68.Google Scholar
  42. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Okada, E. K., A. A. Agostinho & L. C. Gomes, 2005. Spatial and temporal gradients in artisanal fisheries of a large Neotropical reservoir, the Itaipu Reservoir, Brazil. Canadian Journal of Fisheries and Aquatic Sciences 62: 714–724.CrossRefGoogle Scholar
  44. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2018. Vegan: Community Ecology Package. R Package Version 2.5-3.Google Scholar
  45. Oliveira, E. F., C. V. Minte-Vera & E. Goulart, 2005. Structure of fish assemblages along spatial gradients in a deep subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay border). Environmental Biology of Fishes 72: 283–304.CrossRefGoogle Scholar
  46. Orsi, M. L. & J. R. Britton, 2014. Long-term changes in the fish assemblage of a Neotropical hydroelectric reservoir. Journal of Fish Biology 84: 1964–1970.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Pelicice, F. M., P. S. Pompeu & A. A. Agostinho, 2015. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries 16: 697–715.CrossRefGoogle Scholar
  48. Pelicice, F. M., V. M. Azevedo-Santos, A. L. H. Esguícero, A. A. Agostinho & M. S. Arcifa, 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology 16(2): e170150.CrossRefGoogle Scholar
  49. Pereira, P. R., C. S. Agostinho, R. J. Oliveira & E. E. Marques, 2007. Trophic guilds of fishes in sandbank habitats of a Neotropical river. Neotropical Ichthyology 5(3): 399–404.CrossRefGoogle Scholar
  50. Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Petesse, M. L. & M. Petrere Jr., 2012. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecological Engineering 48: 109–116.CrossRefGoogle Scholar
  52. Petrere Jr., M., 1996. Fisheries in large tropical reservoirs in South America. Lakes and Reservoirs: Research and Management 2: 111–133.CrossRefGoogle Scholar
  53. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard & B. D. Richter, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  54. Pough, F. H., C. M. Janis & J. B. Heiser, 2008. A vida dos vertebrados. 2ª edição. Atheneu Editora, São Paulo.Google Scholar
  55. Pringle, C. M., M. C. Freeman & B. Freeman, 2000. Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical-Temperate comparisons. BioScience 50(9): 807–823.CrossRefGoogle Scholar
  56. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. www.r-project.org.
  57. Rahel, F. J. & R. L. McLaughlin, 2018. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecological Applications 28(8): 2066–2081.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Santos, N. C. L., H. S. Santana, J. C. G. A. Ortega, R. M. Dias, L. F. Stegmann, I. M. S. Araújo, W. Severi, L. M. Bini, L. C. Gomes & A. A. Agostinho, 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia 802: 245–253.CrossRefGoogle Scholar
  59. Santos, N. C. L., E. Garcia-Berthou, J. D. Dias, T. M. Lopes, I. P. Affonso, W. Severi, L. M. Bini, L. C. Gomes & A. A. Agostinho, 2018a. Cumulative ecological effects of a Neotropical reservoir cascade across multiple assemblages. Hydrobiologia 819: 77–91.CrossRefGoogle Scholar
  60. Santos, R. E., R. M. Pinto-Coelho, R. Fonseca, N. R. Simões & F. B. Zanchi, 2018b. The decline of fisheries on the Madeira River, Brazil: the high cost of the hydroelectric dams in the Amazon Basin. Fisheries Management and Ecology 25: 380–391.CrossRefGoogle Scholar
  61. Sá-Oliveira, J. C., V. J. Isaac, A. S. Araújo & S. F. Ferrari, 2016. Factors structuring the fish community in the area of the Coaracy Nunes hydroelectric reservoir in Amapá, northern Brazil. Tropical Conservation Science 9(1): 16–33.CrossRefGoogle Scholar
  62. Schork, G. & E. Zaniboni-Filho, 2017. Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River. Brazilian Journal of Biology 77(4): 710–723.CrossRefGoogle Scholar
  63. Soares, A. B., F. M. Pelicice, P. H. F. Lucinda, A. Akama & C. S. Agostinho, 2009. Diversidade de peixes na área de influência da barragem de Peixe Angical, antes e após a formação do reservatório. In Agostinho, C. S., F. M. Pelicice & E. E. Marques (eds), Reservatório de Peixe Angical: bases ecológicas para o manejo da ictiofauna. RiMa Editora, São Carlos: 15–27.Google Scholar
  64. Terra, B. F., A. B. I. Santos & F. G. Araújo, 2010. Fish assemblage in a dammed tropical river: an analysis along the longitudinal and temporal gradients from river to reservoir. Neotropical Ichthyology 8(3): 599–606.CrossRefGoogle Scholar
  65. Toussaint, A., N. Charpin, S. Brosse & S. Villéger, 2016. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6: 22125.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Turgeon, K., C. T. Solomon, C. Nozais & I. Gregory-Eaves, 2016. Do novel ecosystems follow predictable trajectories? Testing the trophic surge hypothesis in reservoirs using fish. Ecosphere 7(12): e01617.CrossRefGoogle Scholar
  67. Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.CrossRefGoogle Scholar
  68. Vitorino Jr., O. B., R. Fernandes, C. S. Agostinho & F. M. Pelicice, 2016. Riverine networks constrain b-diversity patterns among fish assemblages in a large Neotropical river. Freshwater Biology 61: 1733–1745.CrossRefGoogle Scholar
  69. Vitule, J. R. S., A. A. Agostinho, V. M. Azevedo-Santos, V. S. Daga, W. R. T. Darwall, D. B. Fitzgerald, F. A. Frehse, D. J. Hoeinghaus, D. P. Lima-Junior, A. L. B. Magalhães, M. L. Orsi, A. A. Padial, F. M. Pelicice, M. Petrere Jr., P. S. Pompeu & K. O. Winemiller, 2017. We need better understanding about functional diversity and vulnerability of tropical freshwater fishes. Biodiversity and Conservation 26: 757–762.CrossRefGoogle Scholar
  70. Winemiller, K. O., P. B. McIntyre, L. Castello, E. Fluet- Chouinard, T. Giarrizzo, S. Nam, I. G. Baird, W. Darwall, N. K. Lujan, I. Harrison, M. L. J. Stiassny, R. A. M. Silvano, D. B. Fitzgerald, F. M. Pelicice, A. A. Agostinho, L. C. Gomes, J. S. Albert, E. Baran, M. Petrere-Juńior, C. Zarfl, M. Mulligan, J. P. Sullivan, C. C. Arantes, L. M. Sousa, A. A. Koning, D. J. Hoeinghaus, M. Sabaj, J. G. Lundberg, J. Armbruster, M. L. Thieme, P. Petry, J. Zuanon, G. T. Vilara, J. Snoeks, C. Ou, W. Rainboth, C. S. Pavanelli, A. Akama, A. van Soesbergen & L. Saenz, 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia de Ecótonos (current Biodiversidade Ecologia e Conservação)Universidade Federal do TocantinsPorto NacionalBrazil
  2. 2.Programa de Pós-Graduação em Recursos Naturais do CerradoUniversidade Estadual de GoiásAnápolisBrazil
  3. 3.Núcleo de Estudos AmbientaisUniversidade Federal de TocantinsPorto NacionalBrazil
  4. 4.Laboratório de Ecologia de Comunidades e PaisagensUniversidade Federal Rural do Semi-ÁridoMossoróBrazil

Personalised recommendations