Are Cardinium infections causing asexuality in non-marine ostracods?

  • Isa SchönEmail author
  • Koen Martens


Endosymbiotic bacteria manipulating host biology and reproduction, and sometimes also causing parthenogenesis, are known from many metazoan taxa. Three recent studies have reported Cardinium endosymbionts in non-marine ostracods with different reproductive modes. Here, we test with all available data which (a)biotic factors could possibly shape infection patterns in these crustaceans. The presence of Cardinium in non-marine ostracods differs significantly between genders and between species with different reproductive modes. We observed more infections in females and found Cardinium only in ostracods with mixed and asexual reproduction. There is a significant positive correlation between latitude and Cardinium infection, which might be linked to geographic parthenogenesis, a common phenomenon in non-marine ostracods with mixed reproduction. We suggest that the observed patterns best fit a polymorphic equilibrium between endosymbionts and their hosts. Ostracods with mixed reproduction often produce young asexual lineages, implying that Cardinium infections might have occurred more recently, and are widespread. In contrast, putative ancient asexual darwinulid ostracod shows less frequent occurrence of Cardinium. Loss of endosymbionts in these asexual ostracods during their long evolutionary histories of millions of years seems a more likely explanation. Which factors influence Cardinium prevalence in non-marine ostracods needs to be further tested in life history experiments.


Endosymbiont Parthenogenesis Mixed reproduction 16S 



This research was funded by Belgian Federal Science Policy (Belspo WI/36/I03, MO/36/015, BR/314/PI/LATTECO) and was also supported by the EU Marie Curie Research Training Network ‘SexAsex’ (‘From Sex to Asex: a case study on interactions between sexual and asexual reproduction’, contract MRTN-CT-2004-512492) coordinated by K.M. Saskia Bode, Marie Cours, Zohra Elouaazizi, Dunja Lamatsch, Gregory Maes, Valentina Pieri, Lynn Vanbroecke, Tijs Van Den Bergen and Andy Vierstraten are acknowledged for technical support. We also thank Giuseppe Alfonso, Stuart Halse, Federico Marrone, Emrys Martens, Fransesc Mezquita-Joanes, Ricardo Pinto, Valentina Pieri, Robin Smith, Takahiro Kamiya and Alison Smith for providing ostracod samples. Jan Vanaverbeke is thanked for statistical advice on pseudoreplication. We also express thanks to the previous SexASex Consortium for their important contributions to the database of Eucypris virens.

Supplementary material

10750_2019_4110_MOESM1_ESM.xls (138 kb)
Supplementary material 1 (XLS 137 kb)


  1. Adolfsson, S., Y. Michalakis, D. Paczesniak, S. N. S. Bode, R. K. Butlin, D. K. Lamatsch, M. J. Martins, O. Schmit, J. Vandekerkhove & J. Jokela, 2010. Evaluation of elevated ploidy and asexual reproduction as alternative explanations for geographic parthenogenesis in Eucypris virens ostracods. Evolution 64: 986–997.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahrens, M. E. & D. Shoemaker, 2005. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evolutionary Biology 5: 35.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bode, S. N. S., D. K. Lamatsch, M. J. F. Martins, O. Schmit, J. Vandekerkhove, F. Mezquita, T. Namiotko, G. Rossetti, I. Schön, R. K. Butlin & K. Martens, 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution 5: 542–552.CrossRefGoogle Scholar
  4. Bordenstein, S. R. & S. R. Bordenstein, 2011. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6: e29106.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Butlin, R. K., I. Schön & K. Martens, 1998. Asexual reproduction in non-marine ostracods. Heredity 81: 473–480.CrossRefGoogle Scholar
  6. Çelen, E., O. Külköylüoğlu, M. Yavuzatmaca, D. Akdemir & O. Yılmaz, 2019. First evidence of Cardinium (Sphingobacteria) in non-marine ostracods from Turkey. Journal of Crustacean Biology. Scholar
  7. Chaplin, J. A., J. E. Havel & P. D. N. Hebert, 1994. Sex and ostracods. Trends in Ecology and Evolution 9: 435–439.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chigira, A. & K. Miura, 2005. Detection of the ‘Candidatus Cardinium’ bacteria from haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Experimental and Applied Acarology 37: 107–166.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Decaestecker, E., L. De Meester & J. Mergay, 2009. Cyclical parthenogenesis in Daphnia: Sexual versus asexual reproduction. In Schön, I., K. Martens & P. Van Dijk (eds.), Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht: 295–316.Google Scholar
  10. Engelstädter, J. & G. D. D. Hurst, 2009. The ecology and evolution of microbes that manipulate host reproduction. Annual Review of Ecological and Evolutionary Systematics 40: 127–149.CrossRefGoogle Scholar
  11. Frost, C. L., H. Fernández-Marín, J. E. Smith & W. O. H. Hughes, 2010. Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Molecular Ecology 19: 4077–4085.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Giorgini, M., M. M. Monti, E. Caprio, R. Stouthamer & M. S. Hunter, 2009. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harbouring the bacterial symbiont Cardinium. Heredity 102: 365–371.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeo-Electronica 4: 9.Google Scholar
  14. Heethoff, M., R. A. Norton, S. Scheu & M. Maraun, 2009. Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In Schön, I., K. Martens & P. Van Dijk (eds.), Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht: 241–258.Google Scholar
  15. Hilgenboecker, K., P. Hammerstein, P. Schlattmann, A. Telschow & J. H. Werren, 2008. How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiological Letters 281: 215–220.CrossRefGoogle Scholar
  16. Ho, W. H., P. C. To & K. D. Hyde, 2003. Induction of antibiotic production of freshwater fungi using mix-culture fermentation. Fungal Diversity 12: 45–51.Google Scholar
  17. Hoffmann, A. A., P. A. Ross & G. Rašić, 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evolutionary Applications 8: 751–768.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Horne, D. J. & K. Martens, 1999. Geographical parthenogenesis in European non-marine ostracods: post-glacial invasion or Holocene stability? Hydrobiologia 391: 1–7.CrossRefGoogle Scholar
  19. Hurst, G. D., F. M. Jiggins & S. J. Robinson, 2001. What causes inefficient transmission of male-killing Wolbachia in Drosophila? Heredity 87: 220–226.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hurst, L. D. & G. T. McVean, 1996. Clade selection, reversible evolution and the persistence of selfish elements: the evolutionary dynamics of cytoplasmic incompatibility. Proceedings of the Royal Society London Series B 263: 97–104.CrossRefGoogle Scholar
  21. Latorre, A. & A. Manzano-Marín, 2017. Dissecting genome reduction and trait loss in insect endosymbionts. Annals of the New York Academy of Sciences 1389: 52–75.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ma, W. J. & T. Schwander, 2017. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. Journal of Evolutionary Biology 30: 868–888.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Mark, Welch M., C. Ricci & M. Meselson, 2009. Bdelloid rotifers: progress in understanding the success of an evolutionary scandal. In Schön, I., K. Martens & P. Van Dijk (eds.), Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht: 259–280.Google Scholar
  24. Martens, K. (ed.), 1998. Sex and parthenogenesis, evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden.Google Scholar
  25. Martens, K., 2001. Taxonomy of the Herpetocypridinae (Crustacea, Ostracoda). Crustaceana 74(3): 295–308.CrossRefGoogle Scholar
  26. Martens, K., G. Rossetti & D. Horne, 2003. How ancient are ancient asexuals? Proceedings of the Royal Society London Series B 270: 723–729.CrossRefGoogle Scholar
  27. Martens, K. & I. Schön, 2008. Opinion: ancient asexuals; darwinulids not exposed. Nature 453: 587.PubMedCrossRefPubMedCentralGoogle Scholar
  28. McCutcheon, J. P. & N. A. Moran, 2011. Extreme genome reduction in symbiotic bacteria. Nature Review Microbiology 10: 13–26.CrossRefGoogle Scholar
  29. Meisch, C. 2000. Freshwater Ostracoda of Western and Central Europe. Freshwater Invertebrates, Volume 8. Spektrum Akademischer Verlag, Heidelberg, Berlin.Google Scholar
  30. Meisch, C., R. Smith & K. Martens, 2019. A subjective global checklist of the recent non-marine Ostracoda (Crustacea). European Journal of Taxonomy. Scholar
  31. Mioduchowska, M., M. J. Czyż, B. Gołdyn, A. Kilikowska, T. Namiotko, T. Pinceel, M. Łaciak & J. Sell, 2018. Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. Peer Journal 6: e6039.CrossRefGoogle Scholar
  32. Morag, N., E. Klement, Y. Saroya, I. Lensky & Y. Gottlieb, 2012. Prevalence of the symbiont Cardinium in Culicoides (Diptera: Ceratopogonidae) vector species is associated with land surface temperature. Federation of American Socities for Experimental Biology Journal 26: 4025–4034.CrossRefGoogle Scholar
  33. Mouton, L., H. Henri, D. Charif, M. Bouletreau & F. Vavre, 2007. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biological Letters 3: 210–213.CrossRefGoogle Scholar
  34. Nikoh, N., K. Tanaka, F. Shibata, N. Kondo, M. Hizume, M. Shimada & T. Fukatsu, 2008. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Research 18: 272–280.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Reuter, M., J. S. Pedersen & L. Keller, 2005. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94: 364–369.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ros, V. I. D. & J. A. J. Breeuwer, 2009. The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobias arothamni. Heredity 102: 413–422.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Rossetti, G. & K. Martens, 1998. Taxonomic revision of the recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen, Biologie 68: 55–110.Google Scholar
  38. Schmit, O., S. N. S. Bode, A. Camacho, D. J. Horne, D. K. Lamatsch, K. Martens, M. J. Martins, T. Namiotko, G. Rossetti, J. Rueda-Sevilla, I. Schön, J. Vandekerkhove & F. Mesquita-Joanes, 2012. Linking present environment and reproductive modes segregation (Geographic parthenogenesis) in Eucypris virens (Crustacea: Ostracoda). Journal of Biogeography 40: 2396–2408.CrossRefGoogle Scholar
  39. Schön, I., T. Kamiya, T. Van den Berghe, L. Van den Broecke & K. Martens, 2018. The evolutionary history of novel Cardinium strains and their non-marine ostracod (Crustacea) hosts. Molecular Phylogeny and Evolution. Epub 2018 Sep 2110.1016/j.ympev.2018.09.008. Published in 2019 as Molecular Phylogeny and Evolution 130: 406-415.Google Scholar
  40. Schön, I. & K. Martens, 2012. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia 682: 91–110.CrossRefGoogle Scholar
  41. Schön, I., K. Martens & P. Van Dijk (eds.), 2009a. Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht.Google Scholar
  42. Schön, I., V. Pieri, D. Sherbakov & K. Martens, 2017. Cryptic diversity and speciation in endemic Cytherissa (Ostracoda, Crustacea) from Lake Baikal. Hydrobiologia 800: 61–79.CrossRefGoogle Scholar
  43. Schön, I., G. Rossetti & K. Martens, 2009b. Ancient asexual darwinulids: ancient scandals or scandalous gossip? In Schön, I., K. Martens & P. Van Dijk (eds.), Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht: 217–240.Google Scholar
  44. Schwander, T., 2016. The end of an ancient asexual scandal. Current Biology 26: R233–R235.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Schwander, T., H. Lee & B. J. Crespi, 2011. Molecular evidence for ancient asexuality in Timema stick insects. Current Biology 21: 1129–1134.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Serra, M. & T. W. Snell, 2009. Sex loss in monogonont rotifers. In Schön, I., K. Martens & P. Van Dijk (eds.), Lost sex. The evolutionary biology of parthenogenesis. Springer, Dordrecht: 281–294.Google Scholar
  47. Simon, J. C., C. Rispe & P. Sunnucks, 2002. Ecology and evolution of sex in aphids. Trends in Ecology and Evolution 17: 34–39.CrossRefGoogle Scholar
  48. Smith, R. J., T. Kamiya & D. J. Horne, 2006. Living males of the ‘ancient’ asexual Darwinulidae (Ostracoda, Crustacea). Proceedings of the Royal Society London Series B 273: 1569–1578.CrossRefGoogle Scholar
  49. Stefanini, A. & O. Duron, 2012. Exploring the effect of the Cardinium endosymbiont on spiders. Journal of Evolutionary Biology 25: 1521–1530.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Tortosa, P., S. Charlat, P. Labbe, J.-S. Dehecq, H. Barre & M. Weill, 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS ONE 5: e9700.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Unckless, R. L., L. M. Boelio, J. K. Herren & J. Jaenike, 2009. Wolbachia as populations within individual insects: causes and consequences of density variation in natural populations. Proceedings of the Royal Society London Series B 276: 2805–2811.CrossRefGoogle Scholar
  52. Vanthournout, B., J. Swaegers & F. Hendrickx, 2011. Spiders do not escape reproductive manipulations by Wolbachia. BMC Evolutionary Biology 11: 15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Weeks, A. R., F. Marec & J. A. J. Breeuwer, 2001. A mite species that consists entirely of haploid females. Science 292: 2479–2482.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Wernegreen, J. J., 2015. Endosymbiont evolution: predictions from theory and surprises from genomes. Annals of the New York Academy of Sciences 1360: 16–35.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Werren, J. H., L. Baldo & M. E. Clark, 2008. Wolbachia: master manipulators of invertebrate biology. Nature Review of Microbiology 6: 741–751.CrossRefGoogle Scholar
  56. Wilson, A. C. & R. P. Duncan, 2015. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proceedings of the National Academy of Sciences U S A 112: 10255–10261.CrossRefGoogle Scholar
  57. Wouters, K., 1988. On Romecytheridea ampla Wouters sp. nov. Stereo-Atlas Ostracod Shells 15(2): 101–106.Google Scholar
  58. Zchori-Fein, E., S. J. Perlman, S. E. Kelly, N. Katzir & M. S. Hunter, 2004. Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae). International Journal of Systematic and Evolutionary Microbiology 54: 961–968.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Zug, R. & P. Hammerstein, 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7: e38544.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater BiologyBrusselsBelgium
  2. 2.Research Group ZoologyUniversity of HasseltDiepenbeekBelgium
  3. 3.Dept BiologyUniversity of GhentGhentBelgium

Personalised recommendations