Light pollution enhances temporal variability of photosynthetic activity in mature and developing biofilm

  • E. MaggiEmail author
  • I. Bertocci
  • L. Benedetti-Cecchi


Artificial light at night (ALAN) has been recently recognized as a threat for aquatic systems, but a comprehensive knowledge of its effects is still lacking. A fundamental question is whether and how ALAN might affect temporal variability of communities, thus undermining the stability of mature assemblages or influencing the colonization process. Here we investigated the role of ALAN on temporal variability of total biomass and maximum photosynthetic efficiency of marine autotrophic biofilms colonizing Mediterranean high-shore rock surfaces while controlling for density of their main grazers. Results showed stability in total biomass, but an increase in maximum photosynthetic efficiency from unlit to lit conditions, which suggested a temporal change in composition and/or abundance of different taxa within mature assemblages. The effect was weaker during the colonization process; in this case, density of grazers acted in the opposite direction of ALAN. We suggest that the addition of light at times when it would not be naturally present may affect the temporal variability of a variety of functioning in aquatic systems, depending on species-specific sensitivities to ALAN within microbial assemblages and/or indirect effects mediated by their consumers. We highlight to further investigate the role of this emergent topic in aquatic ecology.


Artificial light at night Temporal variability Marine microbiomes Autotrophs 


Supplementary material

10750_2019_4102_MOESM1_ESM.docx (240 kb)
Supplementary material 1 (DOCX 239 kb)


  1. Bertocci, I., E. Maggi, S. Vaselli & L. Benedetti-Cecchi, 2005. Contrasting effects of mean intensity and temporal variation of disturbance on assemblages of rocky shores. Ecology 86: 2061–2067.Google Scholar
  2. Bertocci, I., J. A. Domínguez Godino, C. Freitas, M. Incera, A. Bio & R. Domínguez, 2017. Compounded perturbations in coastal areas: contrasting responses to nutrient enrichment and the regime of storm-related disturbance depend on life-history traits. Functional Ecology 31: 1122–1134.Google Scholar
  3. Bolton, D., M. Mayer-Pinto, G. F. Clark, K. A. Dafforn, W. A. Brassil, A. Becker & E. L. Johnston, 2017. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. Science of the Total Environment 576: 1–9.PubMedGoogle Scholar
  4. Carpenter, E. J. & K. Romans, 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in the North Atlantic Ocean. Science 254: 1356–1358.PubMedGoogle Scholar
  5. Carpenter, S. R., J. J. Cole, M. L. Pace, R. Batt, W. A. Brock, T. Cline, J. Coloso, J. R. Hodgson, J. F. Kitchell, D. A. Seekell, L. Smith & B. Weidel, 2011. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332: 1079–1082.PubMedGoogle Scholar
  6. Como, S., C. Fontaine, E. Maggi, F. Antognarelli & C. Dupuy, 2014. The effects of grazing by the golden grey mullet Liza aurata on microphytobenthos in intertidal mudflats: evidences from mesocosm experiments. Journal of Sea Research 92: 66–73.Google Scholar
  7. Connell, J. H. & R. O. Slatyer, 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.CrossRefGoogle Scholar
  8. Consalvey, M., D. M. Paterson & G. J. C. Underwood, 2004. The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Research 19: 181–202.Google Scholar
  9. Dal Bello, M., E. Maggi, L. Rindi, A. Capocchi, D. Fontanini, C. Sanz-Lazaro & L. Benedetti-Cecchi, 2015. Multifractal spatial distribution of epilithic microphytobenthos on a Mediterranean rocky shore. Oikos 124: 477–485.Google Scholar
  10. Dal Bello, M., L. Rindi & L. Benedetti-Cecchi, 2017. Legacy effects and memory loss: how contingencies moderate the response of rocky intertidal biofilms to present and past extreme events. Global Change Biology 23: 3259–3268.Google Scholar
  11. Davies, T. W. & T. Smyth, 2017. Why artificial light at night should be a focus for global change research in the 21st century. Global Change Biology 24: 872–882.PubMedGoogle Scholar
  12. Davies, T. W., M. Coleman, K. M. Griffith & S. R. Jenkins, 2015. Night-time lighting alters the composition of marine epifaunal communities. Biology Letters 11: 20150080.PubMedPubMedCentralGoogle Scholar
  13. Donohue, I., H. Hillebrand, J. M. Montoya, O. L. Petchey, S. L. Pimm, M. S. Fowler, K. Healy, A. L. Jackson, M. Lurgi, D. McClean, N. E. O’Connor, E. J. O’Gorman & Q. Yang, 2016. Navigating the complexity of ecological stability. Ecology Letters 19: 1072–1085.Google Scholar
  14. Egan, S., T. Harder, C. Burke, P. Steinberg, S. Kjelleberg & T. Thomas, 2013. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Review 37: 462–476.Google Scholar
  15. Falchi, F., P. Cinzano, D. Duriscoe, C. C. M. Kyba, D. G. Elvidge, K. Baugh, B. A. Portnov, N. A. Rybnikova & R. Furgoni, 2016. The new world atlas of artificial night sky brightness. Science Advances 2: e1600377.PubMedPubMedCentralGoogle Scholar
  16. Farrell, T.M., 1991. Models and mechanisms of succession: an example from a rocky intertidal community. Ecological Monographs 61: 95–113.Google Scholar
  17. Gaston, K., 2018. Lighting up the nighttime. Science 362: 744–746.PubMedGoogle Scholar
  18. Gaston, K. J., J. Bennie, T. W. Davies & J. Hopkins, 2013. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological Review of the Cambridge Philosophical Society 2013(88): 912–927.Google Scholar
  19. Grubisic, M., G. Singer, M. C. Bruno, R. H. A. van Grunsven, A. Manfrin, M. T. Monaghan & F. Hölker, 2017. Artificial light at night decreases biomass and alters community composition of benthic primary producers in a sub-alpine stream. Limnology and Oceanography 62: 2799–2810.Google Scholar
  20. Grubisic, M., R. H. A. van Grunsven, A. Manfrin & M. T. Monaghan, 2018. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch. Environmental Pollution 240: 630–638.PubMedGoogle Scholar
  21. Hölker, F., C. Wurzbacher, C. Weißenborn, M. T. Monaghan, S. I. J. Holzhauer & K. Premke, 2015. Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night. Philosophical Transactions of the Royal Society B: Biological Sciences 370: 20140130.Google Scholar
  22. Huang, S. & M. Hadfield, 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Marine Ecology Progress Series 260: 161–172.Google Scholar
  23. Inchausti, P. & J. Halley, 2003. On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology 72: 899–908.Google Scholar
  24. Jacquet, S., F. Partensky, J. Lennon & D. Vaulot, 2001. Diel patterns of growth and division in marine picoplankton in culture. Journal of Phycology 37: 357–369.Google Scholar
  25. Longford, S. R., A. H. Campbell, S. Nielsen, R. J. Case, S. Kjelleberg & P. D. Steinberg, 2019. Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Scientific Reports 9: 1363.PubMedPubMedCentralGoogle Scholar
  26. Maggi, E. & L. Benedetti-Cecchi, 2018. Trophic compensation stabilizes marine primary producers exposed to artificial light at night. Marine Ecology Progress Series 606: 1–5.Google Scholar
  27. Maggi, E., I. Bertocci, S. Vaselli & L. Benedetti-Cecchi, 2011. Connell and Slatyer’s models of succession in the biodiversity era. Ecology 92: 1399–1406.PubMedGoogle Scholar
  28. Maggi, E., M. Milazzo, M. Graziano, R. Chemello & L. Benedetti-Cecchi, 2015. Latitudinal and local scale variations in a rocky intertidal interaction web. Marine Ecology Progress Series 534: 39–48.Google Scholar
  29. Maggi, E., L. Rindi, M. Dal Bello, D. Fontanini, A. Capocchi, L. Bongiorni & L. Benedetti-Cecchi, 2017. Spatio-temporal variability in Mediterranean rocky shore microphytobenthos. Marine Ecology Progress Series 575: 17–29.Google Scholar
  30. Manfrin, A., D. Lehmann, R. H. A. van Grunsven, S. Larsen, J. Syväranta, G. Wharton, C. C. Voigt, M. T. Monaghan & F. Hölker, 2018. Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem. Oikos 127: 960–969.Google Scholar
  31. Micheli, F., K. L. Cottingham, J. Bascompte, O. N. Bjørnstad, G. L. Eckert, J. M. Fischer, T. H. Keitt, B. E. Kendall, J. L. Klug & J. A. Rusak, 1999. The dual nature of community variability. Oikos 85: 161–169.Google Scholar
  32. Navarro-Barranco, C. & L. E. Hughes, 2015. Effects of light pollution on the emergent fauna of shallow marine ecosystems: amphipods as a case study. Marine Pollution Bulletin 94: 235–240.PubMedGoogle Scholar
  33. Neumann, B., A. T. Vafeidis, J. Zimmermann & R. J. Nicholls, 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment. PLoS ONE 10: e0118571.PubMedPubMedCentralGoogle Scholar
  34. O’Connor, N. J. & D. L. Richardson, 1998. Attachment of barnacle (Balanus amphitrite Darwin) larvae: responses to bacterial films and extracellular materials. Journal of Experimental Marine Biology and Ecology 226: 115–129.Google Scholar
  35. Oliveira, J. P., I. Bertocci, G. M. Weber & I. Sousa-Pinto, 2011. Type and timing of disturbance modify trajectories of recovery of rock pool assemblages at Aguda (NW Portugal). Journal of Experimental Marine Biology and Ecology 399: 135–141.Google Scholar
  36. Poulin, C., F. Bruyant, M.-H. Laprise, A. M. Cockshutt, J. M.-R. Vandenhecke & Y. Huot, 2014. The impact of light pollution on diel changes in the photophysiology of Microcystis aeruginosa. Journal of Plankton Research 36: 286–291.Google Scholar
  37. R Core Team, 2018. R: A Language and Environment for Statistical Computing [available on internet at].
  38. Radchuk, V., F. Laender, J. S. Cabral, I. Boulangeat, M. Crawford, F. Bohn, J. Raedt, C. Scherer, J. C. Svenning, K. Thonicke, F. M. Schurr, V. Grimm & S. Kramer-Schadt, 2019. The dimensionality of stability depends on disturbance type. Ecology Letters 22: 674–684.PubMedGoogle Scholar
  39. Raven, J. A. & C. S. Cockell, 2006. Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiology 6: 668–675.PubMedGoogle Scholar
  40. Sanz-Lazaro, C., L. Rindi, E. Maggi, M. Dal Bello & L. Benedetti-Cecchi, 2015. Effects of grazer diversity on marine microphytobenthic biofilm: a ‘tug-of war’ between complementarity and competition. Marine Ecology Progress Series 540: 145–155.Google Scholar
  41. Scheffer, M., S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. van de Koppel, I. A. van de Leemput, S. A. Levin, E. H. van Nes, M. Pascual & J. Vandermeer, 2012. Anticipating critical transitions. Science 338: 344–348.PubMedGoogle Scholar
  42. Serôdio, J. & F. Catarino, 2000. Modelling the primary productivity of intertidal microphytobenthos: time scales of variability and effects of migratory rhythms. Marine Ecology Progress Series 192: 13–30.Google Scholar
  43. Serôdio, J., J. Marques da Silva & F. Catarino, 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Marine Ecology Progress Series 218: 45–61.Google Scholar
  44. Seto, K. C., B. Güneralp & L. R. Hutyra, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the Royal Society of America 109: 16083–16088.Google Scholar
  45. Skov, M. W., M. Volkelt-Igoe, S. J. Hawkins, B. Jesus, R. C. Thompson & C. P. Doncaster, 2010. Past and present grazing boosts the photo-autotrophic biomass of biofilms. Marine Ecology Progress Series 401: 101–111.Google Scholar
  46. Taylor, R. L., 1961. Aggregation, variance and the mean. Nature 189: 732–735.Google Scholar
  47. Thompson, R. C., M. F. Roberts, T. A. Norton & S. J. Hawkins, 2000. Feast or famine for intertidal grazing molluscs: a mismatch between seasonal variations in grazing intensity and the abundance of microbial resources. Hydrobiologia 440: 357–367.Google Scholar
  48. Tilman, D., 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58: 3–15.Google Scholar
  49. Tolhurst, T. J., B. Jesus, V. Brotas & D. M. Paterson, 2003. Diatom migration and sediment armouring – an example from the Tagus Estuary, Portugal. Hydrobiologia 503: 183–193.Google Scholar
  50. Underwood, A. J., 1979. The ecology of intertidal gastropods. Advances in Marine Biology 16: 111–210.Google Scholar
  51. Underwood, G. C. J., R. G. Perkins, M. C. Consalvey, A. R. M. Hanlon, K. Oxborough, N. R. Baker & D. M. Paterson, 2005. Patterns of microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnology and Oceanography 50: 755–767.Google Scholar
  52. van Nes, E. H. & M. Scheffer, 2007. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. American Naturalist 169: 738–747.PubMedGoogle Scholar
  53. Van Niekerk, L., J. B. Adams, D. G. Allan, S. Taljaard, S. P. Weerts, D. Louw, C. Talanda & P. Van Rooyen, 2019. Assessing and planning future estuarine resource use: a scenario-based regional-scale freshwater allocation approach. Science of the Total Environment 657: 1000–1013.PubMedGoogle Scholar
  54. Wissel, C., 1984. A universal law of the characteristic return time near thresholds. Oecologia 65: 101–107.Google Scholar
  55. Yang, G. & L. C. Bowling, 2014. Detection of changes in hydrologic system memory associated with urbanization in the Great Lakes region. Water Resources Research 50: 3750–3763.Google Scholar
  56. Zhang, W., W. Ding, Y. X. Li, C. Tam, S. Bougouffa, R. Wang, B. Pei, H. Chiang, P. Leung, Y. Lu, J. Sun, H. Fu, V. B. Bajic, H. Liu, N. S. Webster & P.-Y. Qian, 2019. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nature Communications 10: 517.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Biologia, CoNISMaUniversità di PisaPisaItaly

Personalised recommendations