Advertisement

Effects of a retaining wall and an artificial embankment on nearshore littoral habitats and biota in a large Alpine lake

  • Wolfgang OstendorpEmail author
  • Hilmar Hofmann
  • Lisa Teufel
  • Oliver Miler
Primary Research Paper

Abstract

The littoral zones of many Central European lakes are severely altered by lake-side retaining walls. These are suspected to impair littoral biota due to the reflection of incoming wave energy. We conducted a comparative study (armoured shore with a retaining wall and a restored shore with a wedge-shaped cobble embankment vs. a pristine shore) at a wind-exposed shore section of Lake Constance. The retaining wall had a number of significant remote effects on the littoral zone, i.e. increased near-bottom current velocities, higher bed-load transport rates, coarsening of surface sediments, reduction in phytomass density, reduction in total densities and number of taxa of macroinvertebrates as well as a significant decline in the percentages of Limnomysis benedeni Czerniavsky, 1882, Ostracoda, Corbicula fluminea O.F. Müller, 1774, Dreissenapolymorpha (Pallas, 1771) and other Bivalvia. However, the significantly affected zone had a rather narrow width of ~ 3 m. Shore restoration measures are needed to remediate negative effects of retaining walls and re-establish ecological conditions that are comparable to those of pristine shores. We recommend a more site sensitive sampling strategy, e.g. for macroinvertebrates in context with the ecological quality assessment under the European Water Framework Directive.

Keywords

European Water Framework Directive Hydromorphology Shore restoration Shore reinforcement Wave exposure 

Notes

Acknowledgements

We acknowledge the valuable help of Klaus van de Weyer (lanaplan, Nettetal, Germany) who took the macrophyte biomass samples, the assistance of Boris Kiefer and his team (scientific divers) and of Martin Wessels (LUBW ISF, Langenargen, Germany) for the laser optical grain-size analyses.

Funding

This work was funded by the joint project “HyMoBioStrategie” grant number 033W021, which was granted within the framework of the BMBF (German Federal Ministry of Education and Research) funding measure “Regional Water Resources Management for Sustainable Water Protection in Germany (ReWaM)”, which belongs to the funding priority “Sustainable Water Management” (NaWaM) as part of FONA (Research for Sustainable Development).

Compliance with ethicial standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10750_2019_4099_MOESM1_ESM.pdf (531 kb)
Supplementary material 1 (PDF 532 kb)

References

  1. Ansari, A. A. & S. S. Gill, 2014. Eutrophication: Causes, Consequences and Control, Vol. 2. Springer, Dordrecht.CrossRefGoogle Scholar
  2. Baumgärtner, D., M. Mörtl & K.-O. Rothhaupt, 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia 613: 97–107.CrossRefGoogle Scholar
  3. Baumgärtner, D., 2004. Principles of macroinvertebrate community structure in the littoral zone of Lake Constance. PhD Thesis, University of Konstanz, 197 pp. Available under KOPS, https://kops.uni-konstanz.de/.
  4. Beck, M. W., B. Vondracek & L. K. Hatch, 2013. Between and within-lake responses of macrophyte richness metrics to shoreline development. Lake and Reservoir Management 29: 179–193.CrossRefGoogle Scholar
  5. Bonis, A. & P. Grillas, 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquatic Botany 72: 235–248.CrossRefGoogle Scholar
  6. Brauns, M., X. F. Garcia, N. Walz & M. T. Pusch, 2007. Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. Journal of Applied Ecology 44: 1138–1144.CrossRefGoogle Scholar
  7. Brauns, M., B. Gücker, C. Wagner, X. F. Garcia, N. Walz & M. T. Pusch, 2011. Human lakeshore development alters the structure and trophic basis of littoral food webs. Journal of Applied Ecology 48(4): 916–925.CrossRefGoogle Scholar
  8. Brewer, C. A. & M. Parker, 1990. Adaptations of macrophytes to life in moving water – upslope limits and mechanical properties of stems. Hydrobiologia 194: 133–142.CrossRefGoogle Scholar
  9. Brodersen, K. P., 1995. The effect of wind exposure and filamentous algae on the distribution of surf zone macroinvertebrates in Lake Esrom, Denmark. Hydrobiologia 297: 131–148.CrossRefGoogle Scholar
  10. Burton, T. M., C. A. Stricker & D. G. Uzarski, 2002. Effects of plant community composition and exposure to wave action on invertebrate habitat use of Lake Huron coastal wetlands. Lakes & Reservoirs: Research and Management 7: 255–269.CrossRefGoogle Scholar
  11. Böhmer, J., K. Arbaciauskas, R. Benstead, W. Gabriels, G. Porst, B. Reeze & H. Timm, 2014. Water Framework Directive Intercalibration Technical Report: Central Baltic Lake Benthic Invertebrate ecological assessment methods. Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy.Google Scholar
  12. Carter, R. W. G., 1988. Coastal Environments. Academic Press, London.Google Scholar
  13. Chambers, P. A., 1987. Nearshore occurrence of submersed aquatic macrophytes in relation to wave action. Canadian Journal of Fisheries and Aquatic Sciences 44: 1666–1669.CrossRefGoogle Scholar
  14. Cho, H. J. & M. A. Poirrier, 2005. A model to estimate potential submersed aquatic vegetation habitat based on studies in Lake Pontchartrain, Louisiana. Restoration Ecology 13: 623–629.CrossRefGoogle Scholar
  15. Coastal Engineering Research Center (ed.), 1984. Shore protection manual. Vol. II. Vicksburg, Miss. (USA).Google Scholar
  16. Dean, R. G., 1991. Equilibrium beach profiles: characteristics and applications. Journal of Coastal Research 7: 53–84.Google Scholar
  17. Dugan, J. E., K. A. Emery, M. Alber, C. R. Alexander, J. E. Byers, A. M. Gehman, N. McLenaghan & S. E. Sojka, 2018. Generalizing ecological effects of shoreline armouring across soft sediment environments. Estuaries and Coasts 41(Suppl 1): S180–S196.CrossRefGoogle Scholar
  18. EEA, European Environment Agency (ed.), 2018. WISE WFD Database (Water Framework Directive Database). https://www.eea.europa.eu/data-and-maps/data/wise-wfd-2.
  19. Elias, J. E. & M. W. Meyer, 2003. Comparisons of undeveloped and developed shorelands, northern Wisconsin, and recommendations for restoration. Wetlands 23: 800–816.CrossRefGoogle Scholar
  20. European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–82.Google Scholar
  21. Fowler, J. E., 1993. Coastal scour problems and methods of prediction of maximum scour at vertical seawalls. CERC-93-8, U.S Army Corps of Engineers. Waterways Experiment Station, Vicksburg, Mass. (USA).Google Scholar
  22. Francis, T. B. & D. E. Schindler, 2009. Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. Oikos 118: 1872–1882.CrossRefGoogle Scholar
  23. Gabel, F., X.-F. Garcia, M. Brauns, A. Sukhodolov, M. Leszinski & M. T. Pusch, 2008. Resistance to ship-induced waves of benthic invertebrates in various littoral habitats. Freshwater Biology 53: 1567–1578.CrossRefGoogle Scholar
  24. Gabel, F., X. F. Garcia, I. Schnauder & M. T. Pusch, 2012. Effects of ship-induced waves on littoral benthic invertebrates. Freshwater Biology 57: 2425–2435.CrossRefGoogle Scholar
  25. Gabel, F., S. Lorenz & S. Stoll, 2017. Effects of ship-induced waves on aquatic ecosystems. Science of Total Environment 601–602: 926–939.CrossRefGoogle Scholar
  26. Gittman, R. K., S. B. Scyphers, C. S. Smith, I. P. Neyland & J. H. Grabowski, 2016. Ecological consequences of shoreline hardening: a meta-analysis. BioScience 66: 763–773.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hofmann, H., A. Lorke & F. Peeters, 2008. The relative importance of wind and ship waves in the littoral zone of a large lake. Limnology and Oceanography 53: 368–380.CrossRefGoogle Scholar
  28. Hofmann, H., A. Lorke & F. Peeters, 2011. Wind and ship wave-induced resuspension in the littoral zone of a large lake. Water Resources Research 47: W09505.CrossRefGoogle Scholar
  29. IAHR, International Association for Hydro-Environment Engineering and Research, 1989. IAHR working group on wave generation and analysis: list of sea-state parameters. Journal of Waterway, Port, Coastal and Ocean Engineering ASCE 115: 793–808.CrossRefGoogle Scholar
  30. IGKB, Internationale Gewässerschutzkommission für den Bodensee, 2006. Bodensee-Uferbewertung [Shore assessment of Lake Constance]. Multi-page flyer, map with explanatory notes. Available under IGKB: https://www.igkb.org.
  31. Inman, D. L., 1949. Sorting of sediments in the light of fluid mechanics. Journal of Sedimentary Petrology 19: 51–70.Google Scholar
  32. James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191.CrossRefGoogle Scholar
  33. Jupp, B. P. & D. H. N. Spence, 1977. Limitations of macrophytes in a eutrophic lakes, Loch Leven, Scotland. Part 2: Wave action, sediments and waterfowl grazing. Journal of Ecology 65: 431–446.CrossRefGoogle Scholar
  34. Jurca, T., L. Donohue, D. Laketic, S. Radulovic & K. Irvine, 2012. Importance of the shoreline diversity features for littoral macroinvertebrate assemblages. Fundamental and Applied Limnology 180: 175–184.CrossRefGoogle Scholar
  35. Jusik, S. & A. Maciol, 2014. The influence of hydromorphological modifications of the littoral zone in lakes on macrophytes. Oceanological and Hydrobiological Studies 43: 66–76.CrossRefGoogle Scholar
  36. Keddy, P. A., 1982. Quantifying within lake gradients of wave energy: interrelationships of wave energy, substrate particle size and shoreline plants in Axe Lake, Ontario. Aquatic Botany 14: 41–58.CrossRefGoogle Scholar
  37. Keddy, P. A., 1983. Vegetation in Axe lake, Ontario: effects of exposure on zonation patterns. Ecology 64: 331–344.CrossRefGoogle Scholar
  38. Keddy, P. A., 1985. Wave disturbance on lakeshores and the within lake distribution of Ontario’s Atlantic coastal plain flora. Canadian Journal of Botany 63: 656–660.CrossRefGoogle Scholar
  39. Koch, E. W., 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24(1): 1–17.CrossRefGoogle Scholar
  40. Kraus, N. C. & W. G. McDougal, 1996. The effects of seawalls on the beach: Part I, An updated literature review. Journal of Coastal Research 12: 691–701.Google Scholar
  41. Kuratorium für Forschung im Küsteningenieurwesen (ed.), 2007. Empfehlungen für die Ausführung von Küstenschutzwerken durch den Ausschuss für Küstenschutzwerke der Deutschen Gesellschaft für Geotechnik e.V. und der Hafenbautechnischen Gesellschaft e.V. [Recommendations for the implementation of coastal protection works by the Committee for Coastal Protection Works of the German Society of Geotechnics and of the Society for Harbour Construction Technology]. Die Küste 65: 1–589. (corrected edition 2007).Google Scholar
  42. Lorenz, S., M. T. Pusch, & U. Blaschke, 2015. Minimum shoreline restoration requirements to improve the ecological status of a north-eastern German glacial lowland lake in an urban landscape. Fundamental and Applied Limnology 186: 323–332.CrossRefGoogle Scholar
  43. Martin, D., F. Bertasi, M. A. Colangelo, M. de Vries, M. Frost, S. J. Hawkins, E. Macpherson, P. S. Moschella, M. P. Satta & R. C. Thompson, 2005. Ecological impact of coastal defence structures on sediment and mobile fauna: evaluating and forecasting consequences of unavoidable modifications of native habitats. Coastal Engineering 52: 1027–1051.CrossRefGoogle Scholar
  44. McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MJM Software Design, Gleneden Beach.Google Scholar
  45. Michener, W. K., 1997. Quantitatively evaluating restoration experiments: research designs, statistical analysis, and data management consideration. Restoration Ecology 5: 324–337.CrossRefGoogle Scholar
  46. Miler, O., G. Porst, E. McGoff, F. Pilotto, L. A. Donohue, T. Jurca, A. G. Solimini, L. Sandin, K. Irvine, J. Aroviita, R. T. Clarke & M. T. Pusch, 2013. Morphological alterations of lake shores in Europe: a multimetric ecological assessment approach using benthic macroinvertebrates. Ecological Indicators 34: 398–410.CrossRefGoogle Scholar
  47. Miles, J. R., P. E. Russell & D. A. Huntley, 2001. Field measurements of sediment dynamics in front of a seawall. Journal of Coastal Research 17: 195–206.Google Scholar
  48. Murphy, K. J. & J. W. Eaton, 1983. Effects of pleasure boat traffic in macrophytes growth in canals. Journal of Applied Ecology 20: 713–729.CrossRefGoogle Scholar
  49. Muus, B., 1968. A field method for measuring “exposure” by means of plaster balls. A preliminary account. Sarsia 34: 61–68.CrossRefGoogle Scholar
  50. Mörtl, M., 2004. Biotic Interactions in the Infralittoral of Lake Constance. PhD Thesis, University of Konstanz, 152 pp. (available under KOPS, https://kops.uni-konstanz.de/), Germany.
  51. Ostendorp, W., 1992. Sedimente und Sedimentbildung in Seeuferröhrichten des Bodensee-Untersees [Sediments and sediment formation in lake shore reeds of the Lake Constance-Untersee]. Limnologica 22: 16–33.Google Scholar
  52. Ostendorp, W., T. Gretler, M. Mainberger, M. Peintinger & K. Schmieder, 2008. Effects of mooring management on submerged vegetation, sediments and macro-invertebrates in Lake Constance, Germany. Wetlands Ecology and Management 17: 525–541.CrossRefGoogle Scholar
  53. Ostendorp, W. & J. Ostendorp, 2014. Uferverbauungen und Uferaufschüttungen am Bodensee-Untersee [Shore reinforcements and backfills at Lake Constance-Untersee]. Mitteilungen der Thurgauischen Naturforschenden Gesellschaft 67: 47–81.Google Scholar
  54. Ostendorp, W., 2014. Auswirkungen der Ufermauern am Bodensee-Untersee auf die litorale Fauna und Flora: Ergebnisse szenariobasierter Expertenurteile [Effects of bank retaining walls at Lake Constance/Untersee (Germany, Switzerland) on the littoral biota: results of a scenario-based expert judgement]. Mitteilungen des Badischen Landesvereins für Naturkunde und Naturschutz N.F. 21: 371–404.Google Scholar
  55. Ostendorp, W. & C. S. Härter, 2013. Sohltransport in der Flachwasserzone des Bodensees: Methodenentwicklung und erste Ergebnisse [Bedload transport in the shallow water zone of Lake Constance: method development and first results]. In H. Brem, B. Eberschweiler, G. Grabherr, H. Schlichtherle & H.-G. Schröder (eds), Erosion und Denkmalschutz am Bodensee und Zürichsee. Bregenz: 79–93.Google Scholar
  56. Ostendorp, W., M. Dienst, W. Löderbusch, M. Peintinger, & I. Strang, 2010. Seeuferrenaturierungen am Bodensee – Naturschutzfachliche Bestandsaufnahme und Empfehlungen. [Shore restoration works at Lake Constance. Survey of conservation value and recommendations]. – Natur und Landschaft 85/3: 89–97.Google Scholar
  57. Pearce, A. M. C., J. S. Sutherland, C. Obhrai, G. Müller, D. Rycroft & R. J. S. Whitehouse, 2007. Scour at a seawall – field measurements and laboratory modelling. In McKee Smith, J. (ed.), Coastal Engineering 2006 – Proceedings of the 30th International Conference, San Diego, California, USA, 3-8 September 2006: 2378–2390.Google Scholar
  58. Penning, E., M. T. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.CrossRefGoogle Scholar
  59. Pełechaty, M., A. Pukacz, K. Apolinarska, A. Pełechaty & M. Siepak, 2013. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017–1035.CrossRefGoogle Scholar
  60. Pickett, S. T. A., 1989. Space-for-time substitution as an alternative to long-term studies. In Likens, G. E. (ed.), Long-Term Studies in Ecology. Springer, New York: 110–135.CrossRefGoogle Scholar
  61. Pierini, S. A. & S. M. Thomaz, 2009. Effects of limnological and morphometric factors upon z(min), z(max) and width of Egeria spp. stands in a tropical reservoir. Restoration Ecology 13: 623–629.Google Scholar
  62. Pilotto, F., G. Free, A. C. Cardoso, G. Wolfram & A. G. Solimini, 2012. Spatial variance of profundal and sublittoral invertebrate benthic communities in response to eutrophication and morphological pressures. Fundamental and Applied Limnology/Archiv für Hydrobiologie 180: 101–110.CrossRefGoogle Scholar
  63. Porter, E. T., L. P. Sanford & S. E. Suttles, 2000. Gypsum dissolution is not a universal integrator of ‘water motion’. Limnology and Oceanography 45: 145–158.CrossRefGoogle Scholar
  64. Pätzig, M., B. Grüneberg & M. Brauns, 2015. Water depth but not season mediates the effects of human lakeshore modification on littoral macroinvertebrates in a large lowland lake. Fundamental and Applied Limnology 186: 311–321.CrossRefGoogle Scholar
  65. Radomski, P., L. A. Bergquist, M. Duval & A. Williquett, 2010. Potential impacts of docks on littoral habitats in Minnesota lakes. Fisheries 35: 489–495.CrossRefGoogle Scholar
  66. Riis, T. & J. Hawes, 2003. Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshwater Biology 48: 75–87.CrossRefGoogle Scholar
  67. Runyan, K. & G. B. Griggs, 2003. The effects of armoring seacliffs on the natural sand supply to the beaches of California. Journal of Coastal Research 19: 336–347.Google Scholar
  68. Rösch, M., 1997. Holocene sediment accumulation in the shallow water zone of Lower Lake Constance. Archiv für Hydrobiologie Supplement 107: 541–562.Google Scholar
  69. Scheifhacken, N., C. Fiek & K.-O. Rothhaupt, 2007. Complex spatial and temporal patterns of littoral benthic communities interacting with water level fluctuations and wind exposure in the littoral zone of a large lake. Fundamental and Applied Limnology 169: 115–129.CrossRefGoogle Scholar
  70. Schmidlin, S. & B. Baur, 2007. Distribution and substrate preference of the invasive clam Corbicula fluminea in the river Rhine in the region of Basel (Switzerland, Germany, France). Aquatic Sciences 69: 153–161.CrossRefGoogle Scholar
  71. Schmieder, K., 2004. European lake shores in danger – concepts for a sustainable development. Limnologica – Ecology and Management of Inland Waters 34: 3–14.CrossRefGoogle Scholar
  72. Schutten, J., J. Dainty & A. J. Davy, 2004. Wave-induced hydraulic forces on submerged aquatic plants in shallow lakes. Annals of Botany 93: 333–341.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Schutten, J., J. Dainty & A. J. Davy, 2005. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology 93: 556–571.CrossRefGoogle Scholar
  74. Schutten, J. & A. J. Davy, 2000. Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology. Oecologia 123: 445–452.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Schwarz, A. M., C. Howards-Williams & J. Clayton, 2000. Analysis of relationships between maximum depth limits of aquatic plants and underwater light in 63 New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 34: 157–174.CrossRefGoogle Scholar
  76. Short, A. D., 1999. Handbook of beach and shoreface morphodyanmics. Wiley, West Sussex.Google Scholar
  77. Siling, R. & G. Urbanič, 2016. Do lake littoral benthic invertebrates respond differently to eutrophication, hydromorphological alteration, land use and fish stocking? Knowledge & Management of Aquatic Ecosystems 417: 35.CrossRefGoogle Scholar
  78. Sobočinski, K. L., J. R. Cordell & C. A. Simenstad, 2010. Effects of shoreline modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington. Beaches, Estuaries and Coasts 33: 699–711.CrossRefGoogle Scholar
  79. Squires, M. M., L. F. W. Lesack & D. Huebert, 2002. The influence of water transparency on the distribution and abundance of macrophytes among lakes of the Mackenzie Delta, Western Canadian Arctic. Freshwater Biology 47: 2123–2135.CrossRefGoogle Scholar
  80. Strand, J. A. & S. E. B. Weisner, 1996. Wave exposure related growth of epiphyton: implications for the distribution of submerged macrophytes in eutrophic lakes. Hydrobiologia 325: 113–119.CrossRefGoogle Scholar
  81. Strand, J. A. & S. E. B. Weisner, 2001. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology 89: 166–175.CrossRefGoogle Scholar
  82. Strayer, D. L. & S. E. G. Findlay, 2010. Ecology of freshwater shore zones. Aquatic Sciences 72: 127–163.CrossRefGoogle Scholar
  83. Sutherland, J., A. Brampton, G. Motyka, B. Blanco, & R. Whitehouse, 2003. Beach lowering in front of coastal structures. Defra – Flood Management Division (ed.), Research Scoping Study Report FD1916/TR1., London, 101 pp.Google Scholar
  84. Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liborussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.CrossRefGoogle Scholar
  85. Søndergaard, M., G. Phillips, S. Hellsten, A. Kolada, F. Ecke, H. Maemets, M. Mjelde, M. M. Azzella & A. Oggioni, 2013. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704: 165–177.CrossRefGoogle Scholar
  86. Tait, G. F. & G. B. Griggs, 1991. Beach response to the presence of a seawall. Comparisons of field observations. Final report CERC 91-1 for the Dept. of the Army, US Army Corps of Engineers (ed.).Google Scholar
  87. Thomas, R. S. & B. Hall, 1992. Seawall Design. Butterworth Heinemann/CIRIA, Oxford.Google Scholar
  88. Thornton, E. B., J. MacMahan & A. H. Sallenger Jr., 2007. Rip currents, mega-cusps, and eroding dunes. Marine Geology 240: 151–167.CrossRefGoogle Scholar
  89. Thorp, J. H. & C. D. Rogers, 2015. Ecology and general biology: Thorp and Covich’s freshwater invertebrates, Vol. I. Academic Press, Cambridge.Google Scholar
  90. Urbanič, G., 2014. A littoral fauna index for assessing the impact of lakeshore alterations in Alpine lakes. Ecohydrology 7: 703–716.CrossRefGoogle Scholar
  91. Urbanič, G., V. Petkovska & M. Pavlin, 2012. The relationship between littoral benthic invertebrates and lakeshore modification pressure in two alpine lakes. Fundamental and Applied Limnology 180: 157–173.CrossRefGoogle Scholar
  92. Vadeboncoeur, Y., P. B. McIntyre & J. Vander Zanden, 2011. Borders of biodiversity: life at the edge of the World’s large lakes. BioScience 61: 526–537.CrossRefGoogle Scholar
  93. Wehrly, K. E., J. E. Breck, L. Wang & L. Szabo-Kraft, 2012. Assessing local and landscape patterns of residential shoreline development in Michigan lakes. Lake and Reservoir Management 28: 158–169.CrossRefGoogle Scholar
  94. Wensink, S. M. & S. D. Tiegs, 2016. Shoreline hardening alters freshwater shoreline ecosystems. Freshwater Science 35: 764–777.CrossRefGoogle Scholar
  95. Werner, S. & K.-O. Rothhaupt, 2008. Effects of the invasive Asian clam Corbicula fluminea on benthic macroinvertebrate taxa in laboratory experiments. Fundamental and Applied Limnology 173: 145–152.CrossRefGoogle Scholar
  96. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  97. White, J. & K. Irvine, 2003. The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 331–351.CrossRefGoogle Scholar
  98. Wright, L. D. & A. D. Short, 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56: 93–118.CrossRefGoogle Scholar
  99. Zhu, G., M. Zhang, T. Cao & L. Ni, 2015. Associations between the morphology and biomechanical properties of submerged macrophytes: implications for its survival and distribution in Lake Erhai. Environmental Earth Sciences 74: 3907–3916.CrossRefGoogle Scholar
  100. Van Zuidam, B. G. & E. T. H. M. Peeters, 2015. Wave forces limit the establishment of submerged macrophytes in large shallow lakes. Limnology and Oceanography 60: 1536–1549.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Limnological InstituteUniversity of KonstanzKonstanzGermany
  2. 2.Department of MicrobiologyRadboud UniversityNijmegenThe Netherlands
  3. 3.Northwest Indian Fisheries CommissionOlympiaUSA

Personalised recommendations