Advertisement

Insect-associated bacterial communities in an alpine stream

  • Joseph P. Receveur
  • Stefano Fenoglio
  • M. Eric BenbowEmail author
Primary Research Paper

Abstract

The roles of macroinvertebrate and microbial communities in stream ecosystems are recognized to be important to energy flow and nutrient cycling. While the linkages of these major groups of aquatic organisms have not been thoroughly investigated, determining how they interact is particularly important for understanding the mechanisms and potential evolutionary relationships that contribute to ecosystem processes, such as organic matter decomposition. We evaluated the microbiomes of several aquatic insect species differing in trophic ecology and belonging to different functional feeding groups at two sites along an Italian Alpine river with different elevation and environmental characteristics, one located above the tree line and the other in a forested environment. We found that the internal microbial communities of the different species significantly varied in taxonomic and functional composition and could be used to classify samples to both species and environment. We demonstrated that functional differences existed between the microbiota of different insect species with variable feeding behaviors, and that species differences were more important, in this context, than environmental or habitat conditions. These results provide new information on how the microbiomes of aquatic insects may potentially be influenced by their hosts and habitat conditions in Alpine streams.

Keywords

Microbiome Decomposition Watershed ecology Microbial communities Macroinvertebrate Mountain Gradient 

Notes

Acknowledgements

The authors would like to thank Courtney Weatherbee for assistance in processing insect specimens as well as the anonymous reviewers whose thoughtful comments greatly improved the manuscript.

Funding

Partial funding was provided by the College of Agriculture and Natural Resources, the Department of Entomology and AgBioResearch at Michigan State University.

Supplementary material

10750_2019_4097_MOESM1_ESM.pdf (711 kb)
Supplementary material 1 (PDF 711 kb)

References

  1. Alonso-Pernas, P., S. Bartram, E. M. Arias-Cordero, A. L. Novoselov, L. Halty-deLeon, Y. Shao & W. Boland, 2017. In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the Forest Cockchafer (Melolontha hippocastani). Frontiers in Microbiology 8: 1970.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alonso-Pernas, P., S. Bartram, E. M. Arias-Cordero, A. L. Novoselov, L. Halty-deLeon, Y. Shao & W. Boland, 2018. Corrigendum: in vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest Cockchafer (Melolontha hippocastani). Frontiers in Microbiology 9: 488.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, N. & A. Cargill, 1987. Nutritional ecology of aquatic detritivorous insects. In Slansky, F. (ed.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, New York: 903–925.Google Scholar
  4. APAT-IRSA, 2003. Metodi analitici per le acque. Manuali e linee Guida 29: 1149.Google Scholar
  5. Ayayee, P. A., C. R. Cosgrove, A. Beckwith, A. A. Roberto & L. G. Leff, 2018. Gut bacterial assemblages of freshwater macroinvertebrate functional feeding groups. Hydrobiologia 822: 157–172.CrossRefGoogle Scholar
  6. Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74(1): 93–102.CrossRefGoogle Scholar
  7. Belfiore, C., 1983. Ephemeroptera: Guide per il riconoscimento delle specie animali delle acque interne italiane. Consiglio Nazionale delle Ricerche AQ/1/201:113.Google Scholar
  8. Benbow, M. E., J. L. Pechal & A. K. Ward, 2017. Heterotrophic bacteria production and microbial community assessment. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology: Volume 1: Ecosystem Structure, 3rd ed. Elsevier, Cambridge: 161–176.CrossRefGoogle Scholar
  9. Benbow, M. E., P. S. Barton, M. D. Ulyshen, J. C. Beasley, T. L. DeVault, M. S. Strickland, J. K. Tomberlin, H. R. Jordan & J. L. Pechal, 2019. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs.  https://doi.org/10.1002/ecm.1331.CrossRefGoogle Scholar
  10. Besemer, K., G. Singer, C. Quince, E. Bertuzzo, W. Sloan & T. J. Battin, 2013. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proceedings of the Royal Society B: Biological Sciences 280: 20131760.CrossRefGoogle Scholar
  11. Bokulich, N. A., B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen, R. Knight, G. A. Huttley & J. G. Caporaso, 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6: 90.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bolyen, E., J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. Abnet, G. A. Al-Ghalith, H. Alexander, E. J. Alm, M. Arumugam & F. Asnicar, 2018. QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints 6: e27295v2.Google Scholar
  13. Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson & S. P. Holmes, 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13: 581.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, C. A. Lozupone, P. J. Turnbaugh, N. Fierer & R. Knight, 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108: 4516–4522.CrossRefGoogle Scholar
  15. Claesson, M. J., S. Cusack, O. O’Sullivan, R. Greene-Diniz, H. de Weerd, E. Flannery, J. R. Marchesi, D. Falush, T. Dinan, G. Fitzgerald, C. Stanton, D. van Sinderen, M. O’Connor, N. Harnedy, K. O’Connor, C. Henry, D. O’Mahony, A. P. Fitzgerald, F. Shanahan, C. Twomey, C. Hill, R. P. Ross & P. W. O’Toole, 2010. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences USA 108: 4586–4591.CrossRefGoogle Scholar
  16. Cummins, K. W., 1974. Structure and function of stream ecosystems. Bioscience 24: 631–641.CrossRefGoogle Scholar
  17. Cummins, K. W., 2016. Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology 75: 235–241.CrossRefGoogle Scholar
  18. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.CrossRefGoogle Scholar
  19. Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.CrossRefGoogle Scholar
  20. Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Doretto, A., F. Bona, E. Falasco, E. Piano, P. Tizzani & S. Fenoglio, 2016. Fine sedimentation affects CPOM availability and shredder abundance in Alpine streams. Journal of Freshwater Ecology 31: 299–302.CrossRefGoogle Scholar
  22. Doretto, A., F. Bona, E. Piano, I. Zanin, A. C. Eandi & S. Fenoglio, 2017. Trophic availability buffers the detrimental effects of clogging in an alpine stream. Science of the Total Environment 592: 503–511.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Douglas, A. E., 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology 60: 17–34.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eggert, S. & J. Wallace, 2007. Wood biofilm as a food resource for stream detritivores. Limnology and Oceanography 52: 1239–1245.CrossRefGoogle Scholar
  25. Faith, D. P. & A. M. Baker, 2006. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evolutionary Bioinformatics 2: 117693430600200007.Google Scholar
  26. Falasco, E. & F. Bona, 2011. Diatom community biodiversity in an Alpine protected area: a study in the Maritime Alps Natural Park. Journal of Limnology 70: 157–167.CrossRefGoogle Scholar
  27. Fenoglio, S., T. Bo, M. Cammarata, M. J. López-Rodríguez & J. M. Tierno de Figueroa, 2015. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream. Journal of Limnology 74(2): 272–277.Google Scholar
  28. Fochetti, R. & J. M. Tiernod e Figueroa, 2008. Plecoptera. In Calderini, (ed.), Fauna d’Italia, Vol. XLIII. NHBS, London: 350.Google Scholar
  29. Golladay, S. W., 1997. Suspended particulate organic matter concentration and export in streams. Journal of the North American Benthological Society 16: 122–131.CrossRefGoogle Scholar
  30. Gupta, P., K. Samant & A. Sahu, 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology 2012: 5.CrossRefGoogle Scholar
  31. Henry, L. M., M. C. Maiden, J. Ferrari & H. C. J. Godfray, 2015. Insect life history and the evolution of bacterial mutualism. Ecology Letters 18: 516–525.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hieber, M., C. T. Robinson, U. Uehlinger & J. Ward, 2005. A comparison of benthic macroinvertebrate assemblages among different types of alpine streams. Freshwater Biology 50: 2087–2100.CrossRefGoogle Scholar
  33. Hocking, M. D. & T. E. Reimchen, 2006. Consumption and distribution of salmon (Oncorhynchus spp.) nutrients and energy by terrestrial flies. Canadian Journal of Fisheries and Aquatic Science 63: 2076–2086.CrossRefGoogle Scholar
  34. Hooper, L. V., D. R. Littman & A. J. Macpherson, 2012. Interactions between the microbiota and the immune system. Science 336: 1268–1273.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication in Fisheries and Aquatic Science 106: 110.Google Scholar
  36. Kassambara, A., 2017. ggpubr:“ggplot2” based publication ready plots. R Package Version 01: 6.Google Scholar
  37. Katoh, K. & D. M. Standley, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kaufman, M. G., E. D. Walker, D. A. Odelson & M. J. Klug, 2000. Microbial community ecology & insect nutrition. American Entomologist 46: 173–185.CrossRefGoogle Scholar
  39. Klug, M. & S. Kotarski, 1980. Bacteria associated with the gut tract of larval stages of the aquatic cranefly Tipula abdominalis (Diptera; Tipulidae). Applied Environmental Microbiology 40: 408–416.PubMedPubMedCentralGoogle Scholar
  40. Kozich, J. J., S. L. Westcott, N. T. Baxter, S. K. Highlander & P. D. Schloss, 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied Environmental Microbiology 79: 5112–5120.CrossRefGoogle Scholar
  41. Kuehn, K. A., 2016. Lentic and lotic habitats as templets for fungal communities: traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecology 19: 135–154.CrossRefGoogle Scholar
  42. Langille, M. G., 2018. Exploring linkages between taxonomic and functional profiles of the human microbiome. MSystems 3: e00163.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Langille, M. G., J. Zaneveld, J. G. Caporaso, D. McDonald, D. Knights, J. A. Reyes, J. C. Clemente, D. E. Burkepile, R. L. V. Thurber, R. Knight, R. G. Beiko & C. Huttenhower, 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 31: 814–821.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Larsen, T., M. Ventura, K. Maraldo, X. Triadó-Margarit, E. O. Casamayor, Y. V. Wang, N. Andersen & D. M. O’brien, 2016. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts. Journal of Animal Ecology 85: 1275–1285.CrossRefGoogle Scholar
  45. Lawson, D. L. & M. J. Klug, 1989. Microbial fermentation in the hindguts of two stream detritivores. Journal of the North American Benthological Society 8: 85–91.CrossRefGoogle Scholar
  46. Lawson, D. L., M. J. Klug & R. W. Merritt, 1984. The influence of the physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipula abdominalis (Diptera: Tipulidae). Canadian Journal of Zoology 62: 2339–2343.CrossRefGoogle Scholar
  47. Liaw, A. & M. Wiener, 2002. Classification and regression by randomForest. R news 2: 18–22.Google Scholar
  48. Louca, S. & M. Doebeli, 2017. Efficient comparative phylogenetics on large trees. Bioinformatics 34: 1053–1055.CrossRefGoogle Scholar
  49. Mason, C. J., E. D. Scully, S. M. Geib & K. Hoover, 2016. Contrasting diets reveal metabolic plasticity in the tree-killing beetle, Anoplophora glabripennis (Cerambycidae: Lamiinae). Scientific Reports 6: 33813.CrossRefPubMedPubMedCentralGoogle Scholar
  50. McMurdie, P. J. & S. Holmes, 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8: e61217.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Merritt, R. W. & K. W. Cummins, 2006. Trophic relationships of macroinvertebrates. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, New York: 585–609.Google Scholar
  52. Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. de Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600.CrossRefGoogle Scholar
  53. Moran, N. A. & A. Telang, 1998. Bacteriocyte-associated symbionts of insects. Bioscience 48: 295–304.CrossRefGoogle Scholar
  54. Moretti, G., 1983. Tricotteri. Guide per il riconoscimento delle specie animali delle acque interne italiane. Consiglio Nazionale delle Ricerche AQ/1/196:155.Google Scholar
  55. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, B. O’hara, G. L. Simpson, P. Solymos, M. H. Stevens & H. Wagner, 2015. Package ‘vegan’. Community Ecology Package, Version 2(9): 1–295.Google Scholar
  56. Pechal, J. L. & M. E. Benbow, 2016. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environmental Microbiology 18: 1511–1522.CrossRefGoogle Scholar
  57. Pechal, J. L., T. L. Crippen, A. M. Tarone, A. J. Lewis, J. K. Tomberlin & M. E. Benbow, 2013. Microbial community functional change during vertebrate carrion decomposition. PLoS ONE 8: e79035.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pechal, J. L., T. L. Crippen, J. A. Cammack, J. K. Tomberlin & M. E. Benbow, 2019. Microbial communities of salmon resource subsidies and associated necrophagous consumers during decomposition: potential of cross-ecosystem microbial dispersal. Food Webs 19: e00114.CrossRefGoogle Scholar
  59. Price, M. N., P. S. Dehal & A. P. Arkin, 2010. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5: e9490.CrossRefPubMedPubMedCentralGoogle Scholar
  60. R core development team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  61. Radivojac, P., W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop, A. Sokolov, K. Graim, C. Funk, K. Verspoor & A. Ben-Hur, 2013. A large-scale evaluation of computational protein function prediction. Nature Methods 10: 221.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Receveur, J. P., J. L. Pechal, M. E. Benbow, G. Donato, T. Rainey & J. R. Wallace, 2018. Changes in larval mosquito microbiota reveal non-target effects of insecticide treatments in hurricane-created habitats. Microbial Ecology.  https://doi.org/10.1007/s00248-018-1175-3.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ridley, E. V., A. C. N. Wong, S. Westmiller & A. E. Douglas, 2012. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7: e36765.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rivosecchi, L., 1984. Ditteri (Diptera): guide per il riconoscimento delle specie animali delle acque interne italiane. Consiglio Nazionale delle Ricerche AQ 1: 28.Google Scholar
  65. Rosenfeld, J. S., 2002. Functional redundancy in ecology and conservation. Oikos 98: 156–162.CrossRefGoogle Scholar
  66. Russell, J. A., C. S. Moreau, B. Goldman-Huertas, M. Fujiwara, D. J. Lohman & N. E. Pierce, 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences 106: 21236–21241.CrossRefGoogle Scholar
  67. Savio, D., L. Sinclair, U. Z. Ijaz, J. Parajka, G. H. Reischer, P. Stadler, A. P. Blaschke, G. Blöschl, R. L. Mach & A. K. Kirschner, 2015. Bacterial diversity along a 2600 km river continuum. Environmental Microbiology 17: 4994–5007.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sedell, J. R., J. E. Richey & F. J. Swanson, The river continuum concept: a basis for the expected ecosystem behavior of very large rivers. In: Proceedings of the international large river symposium, 1989. vol 106. Canadian Special Publication of Fisheries and Aquatic Sciences, p 49–55.Google Scholar
  69. Statzner, B. & B. Higler, 1985. Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 42: 1038–1044.CrossRefGoogle Scholar
  70. Steffan, S. A. & P. S. Dharampal, 2018. Undead food-webs: Integrating microbes into the food-chain. Food Webs 16: e00111.Google Scholar
  71. Straka, M., V. Syrovátka & J. Helešic, 2012. Temporal and spatial macroinvertebrate variance compared: crucial role of CPOM in a headwater stream. Hydrobiologia 686: 119–134.CrossRefGoogle Scholar
  72. Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.CrossRefGoogle Scholar
  73. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. River continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  74. Wagner, K., K. Besemer, N. R. Burns, T. J. Battin & M. M. Bengtsson, 2015. Light availability affects stream biofilm bacterial community composition and function, but not diversity. Environmental Microbiology 17: 5036–5047.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ward, D. & D. Saltz, 1994. Foraging at different spatial scales: Dorcas Gazelles foraging for lilies in the Negev Desert. Ecology 75: 48–58.CrossRefGoogle Scholar
  76. Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research & Management 10: 159–168.CrossRefGoogle Scholar
  77. Weatherbee, C., J. Pechal & M. Benbow, 2017. The dynamic maggot mass microbiome. Annals of the Entomological Society of America 110: 45–53.CrossRefGoogle Scholar
  78. Webster, J. & E. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.CrossRefGoogle Scholar
  79. Wickham, H., 2016. ggplot2: elegant graphics for data analysis. Springer, New York.CrossRefGoogle Scholar
  80. Widder, S., K. Besemer, G. A. Singer, S. Ceola, E. Bertuzzo, C. Quince, W. T. Sloan, A. Rinaldo & T. J. Battin, 2014. Fluvial network organization imprints on microbial co-occurrence networks. Proceedings of the National Academy of Sciences 111: 12799–12804.CrossRefGoogle Scholar
  81. Wilhelm, L., K. Besemer, L. Fragner, H. Peter, W. Weckwerth & T. J. Battin, 2015. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms. The ISME Journal 9: 2454.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Winterbourn, M. J., J. Rounick & B. Cowie, 1981. Are New Zealand stream ecosystems really different? New Zealand Journal of Marine and Freshwater Research 15: 321–328.CrossRefGoogle Scholar
  83. Yun, J.-H., S. W. Roh, T. W. Whon, M.-J. Jung, M.-S. Kim, D.-S. Park, C. Yoon, Y.-D. Nam, Y.-J. Kim & J.-H. Choi, 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied Environmental Microbiology 80: 5254–5264.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EntomologyMichigan State UniversityEast LansingUSA
  2. 2.Ecology, Evolutionary Biology and Behavior ProgramMichigan State UniversityEast LansingUSA
  3. 3.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly
  4. 4.Centro per lo Studio dei Fiumi Alpini (ALPSTREAM - Alpine Stream Research Center)OstanaItaly
  5. 5.Department of Osteopathic Medical SpecialtiesMichigan State UniversityEast LansingUSA

Personalised recommendations