Towards a cohesive strategy for the conservation of the United States’ diverse and highly endemic crayfish fauna

  • Christopher A. TaylorEmail author
  • Robert J. DiStefano
  • Eric R. Larson
  • James Stoeckel
Review Paper


Freshwater biodiversity of the United States has long been recognized for its high level of species richness. The US crayfish fauna is richer than that found in any other country or continent in the world. Crayfishes are critically important members of freshwater ecosystems and have long been utilized for human consumption. Combined, these factors argue for effective conservation. When compared to other diverse aquatic groups such as fishes or unionid mussels, conservation efforts for US crayfishes are lacking. We review here, knowledge gaps that prevent effective conservation and past and ongoing crayfish conservation and management activities. We conclude by proposing a strategy of actions to improve the conservation standing of this important group of organisms. These action items include improved outreach efforts, funding and research to fill numerous knowledge gaps, and the inclusion of crayfishes in broader scale aquatic conservation activities.


Aquatic Review Knowledge gaps Management actions Action items 



We thank Wendall Haag for providing a thorough and insightful review of this manuscript prior to submission. We also thank the countless number of collaborators and colleagues in the crayfish community that we have worked with. While too numerous to name, all have provided valuable advice and input over the years that have helped formulate the proposed strategy. We look forward to their review and updates of this strategy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Aagaard, A., B. B. Anderson & M. H. Depledge, 1991. Simultaneous monitoring of physiological and behavioral activity in marine organisms using non-invasive, computer-aided techniques. Marine Ecology Progress Series 73: 277–282.CrossRefGoogle Scholar
  2. Abell, R. A., D. M. Olson, E. Dinerstein, P. T. Hurley, W. Eichbaum, J. T. Diggs, S. Walters, W. Ettengel, T. Allnutt, C. J. Loucks & P. Hedao, 2000. Freshwater ecoregions of North America: a conservation assessment, Vol. 2. Island Press, Washington, DC.Google Scholar
  3. Abell, R. A., J. D. Allan & B. Lehner, 2007. Unlocking the potential of protected areas for freshwaters. Biological Conservation 134: 48–63.CrossRefGoogle Scholar
  4. Adams, S. B., 2014. Crayfish use of trash versus natural cover in incised, sand-bed streams. Environmental Management 53: 382–392.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Australian Department of Environment and Energy (ADEE), 2017. National recovery plan for the giant freshwater crayfish (Astacopsis gouldi). Commonwealth of Australia.Google Scholar
  6. Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. Bioscience 43: 32–43.CrossRefGoogle Scholar
  7. ASTM E2455–06., 2013. Standard guide for conduction laboratory toxicity tests with freshwater mussels. ASTM International, West Conshohocken.Google Scholar
  8. Ankley, G. T., R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hornung, R. D. Johnson, D. R. Mount, J. W. Nichols, C. L. Russom, P. K. Schmieder, J. A. Serrano, J. E. Tietge & D. L. Villeneuve, 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry 29: 730–741.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Aydin, H., H. Kokko, J. Makkonen, R. Kortet, H. Kukkonen & J. Jussila, 2014. The signal crayfish is vulnerable to both the As and the Psl-isolates of the crayfish plague. Knowledge and Management of Aquatic Ecosystems 413: 03.CrossRefGoogle Scholar
  10. Bae, M. J. & Y. S. Park, 2014. Biological early warning system based on the reponses of aquatic organisms to disturbances: a review. Science of the Total Environment 466–467: 635–649.PubMedCrossRefGoogle Scholar
  11. Beechie, T. J., D. A. Sear, J. D. Olden, G. R. Pess, J. M. Buffington, H. Moir, P. Roni & M. M. Pollock, 2010. Process-based principles for restoring river ecosystems. BioScience 60: 209–222.CrossRefGoogle Scholar
  12. Benke, A. C., 1990. A perspective on America’s vanishing streams. Journal of the North American Benthological Society 9: 77–88.CrossRefGoogle Scholar
  13. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah & D. Galat, 2005. Synthesizing US river restoration efforts. Science 308: 636–637.PubMedCrossRefGoogle Scholar
  14. Bierbower, S. M. & R. L. Cooper, 2009. Measures of heart and ventilatory rates in freely moving crayfish. Journal of Visualized Experiments 32: e1594. Scholar
  15. Bini, G. & G. Chelazzi, 2006. Acclimatable cardiac and ventilatory responses to copper in the freshwater crayfish Procambarus clarkii. Comparative Biochemistry and Physiology C 144: 235–241.Google Scholar
  16. Bloxham, M. J., P. J. Worsfold & M. H. Depledge, 1999. Integrated biological and chemical monitoring: in situ physiological responses of freshwater crayfish to fluctuations in environmental ammonia concentrations. Ecotoxicology 8(3): 225–231.CrossRefGoogle Scholar
  17. Bonvillain, C. P., D. A. Rutherford, W. E. Kelso & C. C. Green, 2013. Evaluation of hand-held meters for determination of hemolymph lactate and protein concentrations in Red Swamp Crayfish Procambarus clarkii. Journal of Crustacean Biology 33: 894–897.CrossRefGoogle Scholar
  18. Boyle, R. A., N. J. Dorn & M. I. Cook, 2014. Importance of crayfish prey to nesting white ibis (Eudocimus albus). Waterbirds 37: 19–29.CrossRefGoogle Scholar
  19. Brown, A. V., M. M. Lyttle & K. B. Brown, 1998. Impacts of gravel mining on gravel bed streams. Transactions of the American Fisheries Society 127: 979–994.CrossRefGoogle Scholar
  20. Cairns, A. & N. Yan, 2009. A review of the influence of low ambient calcium concentrations on freshwater daphniids, gammarids, and crayfish. Environmental Reviews 17: 67–79.CrossRefGoogle Scholar
  21. Capinha, C., E. R. Larson, E. Tricarico, J. D. Olden & F. Gherardi, 2013. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes. Conservation Biology 27: 731–740.PubMedCrossRefGoogle Scholar
  22. Carlson, C. A. & R. T. Muth, 1993. Endangered species management. In Kohler, C. C. & W. A. Hubert (eds.), Inland fisheries management in North America. American Fisheries Society, Bethesda: 355–381.Google Scholar
  23. Chang, E. S. & D. L. Mykles, 2011. Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology 172: 323–330.PubMedCrossRefGoogle Scholar
  24. Comeaux, M. L., 1975. Historical development of the crayfish industry in the United States. Freshwater Crayfish 2: 609–620.Google Scholar
  25. Cowart, D. A., K. G. Breedveld, M. J. Ellis, J. M. Hull & E. R. Larson, 2018. Environmental DNA (eDNA) applications for the conservation of imperiled crayfish (Decapoda: Astacidea) through monitoring of invasive species barriers and relocated populations. Journal of Crustacean Biology 38: 257–266.CrossRefGoogle Scholar
  26. Crall, A. W., C. S. Jarnevich, N. E. Young, B. J. Panke, M. Renz & T. J. Stohlgren, 2015. Citizen science contributes to our knowledge of invasive plant species distributions. Biological Invasions 17: 2415–2427.CrossRefGoogle Scholar
  27. Crandall, K. A. & S. De Grave, 2017. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology 37: 615–653.CrossRefGoogle Scholar
  28. Creed, R. P., 1994. Direct and indirect effects of crayfish grazing in a stream community. Ecology 75: 2091–2103.CrossRefGoogle Scholar
  29. Crocker, D. W., 1979. The crayfishes of New England. Proceedings of the Biological Society of Washington 92: 225–252.Google Scholar
  30. Crowl, T. A. & A. P. Covich, 1990. Predator-influenced life-history shifts in a freshwater snail. American Association for the Advancement of Science 247: 949–951.CrossRefGoogle Scholar
  31. DeAngelis, D. L., L. J. Gross, M. A. Huston, W. F. Wolff, D. M. Fleming, E. J. Comiskey & S. M. Sylvester, 1998. Landscape modeling for Everglades ecosystem restoration. Ecosystems 1: 64–75.CrossRefGoogle Scholar
  32. DeWalt, R. E., C. Favret & D. W. Webb, 2005. Just how imperiled are aquatic insects? A case study of Stoneflies (Plecoptera) in Illinois. Annals of the Entomological Society of America 98: 941–950.CrossRefGoogle Scholar
  33. DiStefano, R. J, 2005. Trophic interactions between Missouri Ozarks stream crayfish communities and sport fish predators: increased abundance and size structure of predators cause little change in crayfish community densities. Final Report, Missouri Department of Conservation, Dingell-Johnson Project F-1-R-054, Study S-41, Job 4, Columbia.Google Scholar
  34. DiStefano, R. J., M. E. Litvan & P. T. Horner, 2009. The bait industry as a potential vector for alien crayfish introductions: problem recognition by fisheries agencies and a Missouri evaluation. Fisheries 34: 586–597.CrossRefGoogle Scholar
  35. DiStefano, R. J., R. A. Reitz & E. M. Imhoff, 2016. Examining one state’s regulation development process to manage alien crayfish introductions. Fisheries 41: 726–737.CrossRefGoogle Scholar
  36. Dorn, N. J. & J. M. Wojdak, 2004. The role of omnivorous crayfish in littoral communities. Oecologia 140: 150–159.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dyer, J. J., S. K. Brewer, T. A. Worthington & E. A. Bergey, 2013. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations. Freshwater Biology 58: 1071–1088.CrossRefGoogle Scholar
  38. Edgerton, B. F., 2002. Hazard analysis of exotic pathogens of potential threat to European freshwater crayfish. Bulletin francais de la peche et de la pisciculture 367: 813–820.CrossRefGoogle Scholar
  39. Egly, R. M. & E. R. Larson, 2018. Distribution, habitat associations, and conservation status updates for the pilose crayfish Pacifastacus gambelii (Girard, 1852) and Snake River pilose crayfish Pacifastacus connectens (Faxon, 1914) of the western United States. PeerJ 6: e5668.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Elkins, D. C., S. C. Sweat, K. S. Hill, B. R. Kuhajda, A. L. George, & S. J. Wenger, 2016. The Southeastern Aquatic Biodiversity Conservation Strategy. Final report. University of Georgia River Basin Center, Athens.Google Scholar
  41. Fausch, K. D., B. E. Rieman, J. B. Dunham, M. K. Young & D. P. Peterson, 2009. Invasion versus isolation: trade-offs in managing native salmonids with barriers to upstream movement. Conservation Biology 23: 859–870.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fischer, J. & D. B. Lindenmayer, 2000. An assessment of the published results of animal relocations. Biological Conservation 96: 1–11.CrossRefGoogle Scholar
  43. Flinders, C. A. & D. D. Magoulick, 2005. Distribution, habitat use and life history of stream-dwelling crayfish in the Spring River drainage of Arkansas and Missouri with a focus on the imperiled Mammoth Spring crayfish (Orconectes marchandi). The American Midland Naturalist 154: 358–374.CrossRefGoogle Scholar
  44. Freshwater Mollusk Conservation Society (FMCS), 2016. A national strategy for the conservation of native freshwater mussels. Freshwater Mollusk Biology and Conservation 19: 1–21.Google Scholar
  45. Frings, R. M., S. C. K. VaeBen, H. Grob, S. Roger, H. Schüttrumpf & H. Hollert, 2013. A fish-passable barrier to stop the invasion of non-indigenous crayfish. Biological Conservation 159: 521–529.CrossRefGoogle Scholar
  46. Forteath, N., 1985. Studies on the Tasmanian freshwater crayfish – Astacopsis gouldi. Inland Fisheries Commission Newsletter 14:5. Tasmanian Inland Fisheries Service, New Norfolk, Tasmania, Australia.Google Scholar
  47. Frontera, J., I. Vatick, A. Chaulet & E. Rodriguez, 2011. Effects of glyphosate and polyoxyethylenamine on growth and energetic reserves in the freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Archives of Environmental Contamination and Toxicology 61: 590–598.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fuentes-Pardo, A. P. & D. E. Ruzzante, 2017. Whole-genome sequencing approaches for conservation biology: advances, limitations and practical recommendations. Molecular Ecology 2017: 5369–5406.CrossRefGoogle Scholar
  49. Galat, D. L., L. H. Fredrickson, D. D. Humburg, K. J. Bataille, J. R. Bodie, J. Dohrenwend, G. T. Gelwicks, J. E. Havel, D. L. Helmers, J. B. Hooker & J. R. Jones, 1998. Flooding to restore connectivity of regulated, large-river wetlands: natural and controlled flooding as complementary processes along the lower Missouri River. BioScience 48: 721–733.CrossRefGoogle Scholar
  50. Gallardo, B. & D. C. Aldridge, 2013. Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation 160: 225–233.CrossRefGoogle Scholar
  51. Gatti, P., P. Petitgas & M. Huret, 2017. Comparing biological traits of anchovy and sardine in the Bay of Biscay: a modelling approach with the dynamic energy budget. Ecological Modelling 348(24): 93–109.CrossRefGoogle Scholar
  52. Geddes, M. C. & C. M. Jones, 1997. Australian freshwater crayfish: exploitation by fishing and aquaculture. Australian Biologist 10: 70–75.Google Scholar
  53. George, A. L., B. R. Kuhajda, J. D. Williams, M. A. Cantrell, P. L. Rakes & J. R. Shute, 2009. Guideline for propagation and translocation for freshwater fish conservation. Fisheries 34: 529–545.CrossRefGoogle Scholar
  54. Gherardi, F., L. Aquiloni, J. Diéguez-Uribeondo & E. Tricarico, 2011. Managing invasive crayfish: is there a hope? Aquatic Sciences 73: 185–200.CrossRefGoogle Scholar
  55. Glon, M. G. & R. F. Thoma, 2017. An observation of the use of Devil Crayfish (Cambarus cf. diogenes) burrows as brooding habitat by Eastern Cicada Killer Wasps (Sphecius speciosus). Freshwater Crayfish 23: 55–57.Google Scholar
  56. Goodchild, C. G., A. M. Simpson, M. Minghetti & S. E. DuRant, 2018. Bioenergetics-adverse outcome pathway (AOP): linking organismal and suborganismal energetic endpoints to adverse outcomes. Environmental Toxicology and Chemistry. Scholar
  57. Groh, K. J., R. N. Carvalho, J. K. Chipman, N. D. Denslow, M. Halder, C. A. Murphy, D. Roelofs, A. Rolaki, K. Schirmer & K. H. Watanabe, 2015. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120: 764–777.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Groves, C. & E. T. Game, 2016. Conservation planning: informed decisions for a healthier planet. Roberts and Company Publishers, Greenwood Village.Google Scholar
  59. Grow, L., 1982. Burrowing/soil-texture relationships in the crayfish, Cambarus diogenes diogenes Girard (Decapoda, Astacidea). Crustaceana 42: 150–157.CrossRefGoogle Scholar
  60. Haag, W. R., 2012. North American Freshwater Mussels. Natural History, Ecology and Conservation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  61. Haag, W. R. & J. D. Williams, 2014. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.CrossRefGoogle Scholar
  62. Haggerty, S. M., D. P. Batzer & C. R. Jackson, 2002. Macroinvertebrate assemblages in perennial headwater streams of the Coastal Mountain Range of Washington, U.S.A. Hydrobiologia 479: 143–154.CrossRefGoogle Scholar
  63. Hansen, G. J., C. L. Hein, B. M. Roth, M. J. Vander Zanden, J. W. Gaeta, A. W. Latzka & S. R. Carpenter, 2013. Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences 70: 1109–1122.CrossRefGoogle Scholar
  64. Heemeyer, J. L., P. J. Williams & M. J. Lannoo, 2012. Obligate crayfish burrow use and core habitat requirements of crawfish frogs. The Journal of Wildlife Management 76: 1081–1091.CrossRefGoogle Scholar
  65. Hein, C. L., B. M. Roth, A. R. Ives & M. J. Vander Zanden, 2006. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences 63: 383–393.CrossRefGoogle Scholar
  66. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Helms, B., W. Budnick, P. Pecora, J. Skipper, E. Kosnicki, J. Feminella & J. Stoeckel, 2013a. The influence of soil type, congeneric cues, and floodplain connectivity on the local distribution of the devil crayfish (Cambarus diogenes Girard). Freshwater Science 32: 1333–1344.CrossRefGoogle Scholar
  68. Helms, B., C. Figiel, J. Rivera, J. Stoeckel, G. Stanton & T. Keller, 2013b. Life-history observations, environmental associations, and soil preferences of the Piedmont Blue Burrower (Cambarus [Depressicambarus] harti) Hobbs. Southeastern Naturalist 12: 143–160.CrossRefGoogle Scholar
  69. Hamr, P., 2002. Orconectes. In Holdich, D. M. (ed.), Biology of freshwater crayfish. Blackwell Science Ltd., Malden: 585–608.Google Scholar
  70. Hobbs Jr., H. H., 1981. The crayfishes of Georgia. Smithsonian Contributions to Zoology. Scholar
  71. Hobbs Jr., H. H., 1989. An illustrated checklist of the American crayfishes (Decapoda:Astacidae, Cambaridae, and Parastacidae). Smithsonian Contributions to Zoology 480: 1–236.CrossRefGoogle Scholar
  72. Holdich, D. M. (ed.), 2002. Biology of freshwater crayfish. Blackwell Science Ltd., Malden.Google Scholar
  73. Horwitz, P., 1991. On the distribution and exploitation of the Tasmanian Giant Freshwater Lobster Astacopsis gouldi Clark. Final report to the Australian Office of the National Estate.Google Scholar
  74. Hossain, M. D., J. J. Lahoz-Monfort, M. A. Burgman, M. Bohm, H. Kujala & L. M. Bland, 2018. Assessing the vulnerability of freshwater crayfish to climate change. Diversity and Distributions 24: 1830–1843.CrossRefGoogle Scholar
  75. Hubert, W. A., 2010. Survey of Wyoming crayfishes: 2007–2009. Wyoming Game and Fish Commission, Cheyenne.Google Scholar
  76. Huner, J. V., 1978. Exploitation of freshwater crayfishes in North America. Fisheries 3: 2–5.Google Scholar
  77. Huner, J. V., 2002. Procambarus. In Holdich, D. M. (ed.), Biology of freshwater crayfish. Blackwell Science Ltd., Malden: 541–584.Google Scholar
  78. Huryn, A. D. & B. J. Wallace, 1987. Production and litter processing by crayfish in an Appalachian mountain stream. Freshwater Biology 18: 277–286.CrossRefGoogle Scholar
  79. Irwin, J. T., J. P. Costanzo & R. E. Lee Jr., 1999. Terrestrial hibernation in the northern cricket frog, Acris crepitans. Canadian Journal of Zoology 77: 1240–1246.CrossRefGoogle Scholar
  80. James, J., F. M. Slater, I. P. Vaughan, K. A. Young & J. Cable, 2015. Comparing the ecological impacts of native and invasive crayfish: could native species’ translocation do more harm than good? Oecologia 178: 309–316.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Johnson, M. F., S. P. Rice & I. Reid, 2010. Topographic disturbance of subaqueous gravel substrates by signal crayfish (Pacifastacus leniusculus). Geomorphology 123: 269–278.CrossRefGoogle Scholar
  82. Johnson, M. F., S. P. Rice & I. Reid, 2011. Increase in coarse sediment transport associated with disturbance of gravel river beds by signal crayfish (Pacifastacus leniusculus). Earth Surface Processes and Landforms 36: 1680–1692.CrossRefGoogle Scholar
  83. Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem, engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  84. Jones, C. G., J. H. Lawton & M. Shachak, 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957.CrossRefGoogle Scholar
  85. Jones, J. P. G., F. B. Andriahajaina, N. J. Hockley, K. A. Crandall & O. R. Ravoahangimalala, 2007. The ecology and conservation status of Madagascar’s endemic freshwater crayfish (Parastacidae; Astacoides). Freshwater Biology 52: 1820–1833.CrossRefGoogle Scholar
  86. Keast, A., 1985. The piscivore feeding guild of fishes in small freshwater ecosystems. Environmental Biology of Fishes 12: 119–129.CrossRefGoogle Scholar
  87. Kempton, H., 2017. Breakthrough as Tasmanian giant freshwater lobsters bred in captivity. The Mercury, October 9, 2017. Accessed January 11, 2018 from
  88. Kilian, J. V., A. J. Becker, S. A. Stranko, M. Ashton, R. J. Klauda, J. Gerber & M. Hurd, 2010. The status and distribution of Maryland crayfishes. Southeastern Naturalist 9: 11–32.CrossRefGoogle Scholar
  89. Knouft, J. H. & D. L. Ficklin, 2017. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annual Reviews in Ecology, Evolution, & Systematics 48: 111–133.CrossRefGoogle Scholar
  90. Köksal, G., 1988. Astacus leptodactylus in Europe. In Holdich, D. M. & R. S. Lowery (eds.), Freshwater crayfish: biology, management and exploitation. Chapman and Hall, London: 365–400.Google Scholar
  91. Kominoski, J. S., A. Ruhí, M. M. Hagler, K. Petersen, J. L. Sabo, T. Sinha, A. Sankarasubramanian & J. D. Olden, 2018. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast. Global Change Biology 24: 1175–1185.PubMedCrossRefGoogle Scholar
  92. Kouba, A., M. Buric & P. Kozák, 2010. Bioaccumulation and effects of heavy metals in crayfish: a review. Water, Air, and Soil Pollution 211: 5–16.CrossRefGoogle Scholar
  93. Kozák, P., T. Policar, V. P. Fedotov, T. V. Kuznetsova, M. Buric & S. V. Kholodkevich, 2009. Effect of chloride content in water on heart rate in narrow-clawed crayfish (Astacus leptodactylus). Knowledge and Management of Aquatic Ecosystems 394–395: 1–10.Google Scholar
  94. Kozák, P., L. Füreder, A. Kouba, J. Reynolds & C. Souty-Grosset, 2011. Current conservation strategies for European crayfish. Knowledge and Management of Aquatic Ecosystems 401: 1–8.CrossRefGoogle Scholar
  95. Kramer, V. J., M. A. Etterson, M. Hecker, C. A. Murphy, G. Roesiiadi, D. J. Spade, J. A. Spromberg, M. Wang & G. T. Ankley, 2011. Adverse outcome pathways and ecological risk assessment: bridging to population-level effects. Environmental Toxicology and Chemistry 30(1): 64–76.PubMedCrossRefGoogle Scholar
  96. Krause, K. P., H. Chien, D. L. Ficklin, D. M. Hall, G. A. Schuster, T. M. Swannack, C. A. Taylor & J. H. Knouft, 2019. Streamflow regimes and geologic conditions are more important than water temperature when projecting future crayfish distributions. Climate Change. Scholar
  97. Kuklina, I., A. Kouba & P. Kozák, 2013. Real-time monitoring of water quality using fish and crayfish as bio-indicators: a review. Environmental Monitoring and Assessment 185: 5043–5053.PubMedCrossRefGoogle Scholar
  98. Larson, E. R. & J. D. Olden, 2010. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conservation Biology 24: 1099–1110.PubMedCrossRefGoogle Scholar
  99. Larson, E. R. & J. D. Olden, 2011. The state of crayfish in the Pacific Northwest. Fisheries 36: 60–73.CrossRefGoogle Scholar
  100. Larson, E. R. & J. D. Olden, 2012. Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography 21: 1114–1125.CrossRefGoogle Scholar
  101. Larson, E. R., L. A. Twardochleb & J. D. Olden, 2016. Comparison of trophic function between the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii. Limnology. Scholar
  102. Larson, E. R., M. A. Renshaw, C. A. Gantz, J. Umek, S. Chandra, D. M. Lodge & S. P. Egan, 2017. Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus and Pacifastacus leniusculus in large lakes of North America. Hydrobiologia 800: 173–185.CrossRefGoogle Scholar
  103. Lee, P., C. Smyth & S. Boutin, 2004. Quantitative review of riparian buffer width guidelines from Canada and the United States. Journal of Environmental Management 70: 165–180.PubMedCrossRefGoogle Scholar
  104. Lewis, S. D., 2002. Pacifastacus. In Holdich, D. M. (ed.), Biology of freshwater crayfish. Blackwell Science Ltd., Malden: 511–540.Google Scholar
  105. Litvan, M. E., R. J. DiStefano, K. J. Walker & X. Gao, 2010. A recreational fishery for Longpincered Crayfish, Orconectes longidigitus (Faxon), in Table Rock Lake, Missouri, USA: effects of environmental factors on trapping success. Freshwater Crayfish 17: 91–101.Google Scholar
  106. Lodge, D. M., C. A. Taylor, D. M. Holdich & J. Skurdal, 2000. Nonindigenous crayfishes threaten North American freshwater biodiversity: lessons from Europe. Fisheries 25: 7–20.CrossRefGoogle Scholar
  107. Lodge, D. M., P. W. Simonin, S. W. Burgiel, R. P. Keller, J. M. Bossenbroek, C. L. Jerde, A. M. Kramer, E. S. Rutherford, M. A. Barnes, M. E. Wittmann, W. L. Chadderton, J. L. Apriesnig, D. Beletsky, R. M. Cooke, J. M. Drake, S. P. Egan, D. C. Finnoff, C. A. Gantz, E. K. Grey, M. H. Hoff, J. G. Howeth, R. A. Jensen, E. R. Larson, N. E. Mandrak, D. M. Mason, F. A. Martinez, T. J. Newcomb, J. D. Rothlisberger, A. J. Tucker, T. W. Warziniack & H. Zhang, 2016. Risk analysis and bioeconomics of invasive species to inform policy and management. Annual Review of Environment and Resources 41: 453–488.CrossRefGoogle Scholar
  108. Longshaw, M., 2011. Diseases of crayfish: a review. Journal of Invertebrate Pathology 106: 54–70.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Longshaw, M., 2016. Chapter 6: Parasites, commensals, pathogens, and diseases of crayfish. In Longshaw, M. & P. Stebbing (eds), Biology and ecology of crayfish. CRC Press, Boca Raton: 171–250.CrossRefGoogle Scholar
  110. Loughman, Z. J., 2010. Ecology of Cambarus dubius (upland burrowing crayfish) in north-central West Virginia. Southeastern Naturalist 9: 217–230.CrossRefGoogle Scholar
  111. Loughman, Z. J., S. A. Welsh & T. P. Simon, 2012. Occupancy rates of primary burrowing crayfish in natural and disturbed large river bottomlands. Journal of Crustacean Biology 32: 557–564.CrossRefGoogle Scholar
  112. Loughman, Z. J. & J. W. Fetzner Jr., 2015. Astacology and crayfish conservation in the southeastern United States: past, present and future. Freshwater Crayfish 21: 1–5.Google Scholar
  113. Lynch, D. T., D. R. Leasure & D. D. Magoulick, 2018. The influence of drought on flow–ecology relationships in Ozark Highland streams. Freshwater Biology 63: 946–968.CrossRefGoogle Scholar
  114. Martin, B. T., E. I. Zimmer, V. Grimm & T. Jager, 2012. Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods in Ecology and Evolution 3: 445–449.CrossRefGoogle Scholar
  115. Martinez, P., 2012. Invasive crayfish in a high desert river: implications of concurrent invaders and climate change. Aquatic Invasions 7: 219–234.CrossRefGoogle Scholar
  116. Master, L., 1990. The imperiled status of North American aquatic animals. Biodiversity Network News 3(1–2): 7–8.Google Scholar
  117. McMurray, S. E. & K. J. Roe, 2017. Perspectives on the controlled propogation, augmentation, and reintroduction of freshwater mussels (Mollusca: Bivalvia: Unionoida). Freshwater Mollusk Biology and Conservation 20: 1–12.CrossRefGoogle Scholar
  118. Metcalf, J. L., S. L. Stowell, C. M. Kennedy, K. B. Rogers, D. McDonald, J. Epp, K. Keepers, A. Cooper, J. J. Austin & A. P. Martin, 2012. Historical stocking data and 19th century DNA reveal human-induced changes to native diversity and distribution of cutthroat trout. Molecular Ecology 21: 5194–5207.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Momot, W. T., 1984. Crayfish production a reflection of community energetics. Journal of Crustacean Biology 4: 35–54.CrossRefGoogle Scholar
  120. Momot, W. T., 1991. Potential for exploitation of freshwater crayfish in coolwater systems: management guidelines and issues. Fisheries 16: 14–21.CrossRefGoogle Scholar
  121. Momot, W. T., 1993. The role of exploitation in altering the processes regulating crayfish populations. Freshwater Crayfish 9: 101–117.Google Scholar
  122. Momot, W. T., 1995. Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science 3: 3–63.CrossRefGoogle Scholar
  123. Momot, W. T., H. Gowing & P. D. Jones, 1978. The dynamics of crayfish and their role in ecosystems. The American Midland Naturalist 99: 10–35.CrossRefGoogle Scholar
  124. Moore, M. J., R. J. DiStefano & E. R. Larson, 2013. An assessment of life-history studies for USA and Canadian crayfishes: identifying biases and knowledge gaps to improve conservation and management. BioOne 32: 1276–1287.Google Scholar
  125. Olden, J. D., M. J. Vander Zanden & P. T. Johnson, 2011a. Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). Ecological Applications 21: 2587–2599.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Olden, J. D., M. J. Kennard, J. J. Lawler & N. L. Poff, 2011b. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology 25: 40–47.PubMedCrossRefPubMedCentralGoogle Scholar
  127. National Science and Technology Council, 1999. Committee on Environment and Natural Resources of the National Science and Technology Council, Ecological Risk Assessment in the Federal Government, Report CENR/5-99/001, May 1999.Google Scholar
  128. Nielsen, L. A. & D. J. Orth, 1988. The hellgrammite-crayfish bait fishery of the New River and its tributaries, West Virginia. North American Journal of Fisheries Management 8: 317–324.CrossRefGoogle Scholar
  129. Nielsen, L. A., 1993. History of inland fisheries management in North America. Pages 3–29 in C. C. Kohler and W. A. Hubert, editors. Inland Fisheries Management in North America. American Fisheries Society, Bethesda, Maryland.Google Scholar
  130. Nilsson, C., J. M. Sarneel, D. Palm, J. Gardeström, F. Pilotto, L. E. Polvi, L. Lind, D. Holmqvist & H. Lundqvist, 2017. How do biota respond to additional physical restoration of restored streams? Ecosystems 20: 144–162.CrossRefGoogle Scholar
  131. National Native Mussel Conservation Committee (NNMCC), 1998. National strategy for the conservation of native freshwater mussels. Journal of Shellfish Research 17: 1419–1428.Google Scholar
  132. Nisbet, R. M., E. B. Muller, K. Lika & S. A. L. M. Kooijman, 2000. From molecules to ecosystems through dynamic energy budget models. Journal of Animal Ecology 69: 913–926.CrossRefGoogle Scholar
  133. Nyström, P. & J. A. Strand, 1996. Grazing by a native and an exotic crayfish on aquatic macrophytes. Freshwater Biology 36: 673–682.CrossRefGoogle Scholar
  134. Parkyn, S. M., K. J. Collier & B. J. Hicks, 2001. New Zealand stream crayfish: functional omnivores but trophic predators? Freshwater Biology 46: 641–652.CrossRefGoogle Scholar
  135. Peay, S., 2009. Selection criteria for “ark sites” for white-clawed crayfish. In: J. Brickland, D. M. Holdich and E. M. Imhoff (eds), Proceedings of the crayfish conservation in the British Isles conference, March 2009. Leeds, UK, pp. 63–69.Google Scholar
  136. Peters, J. A. & D. M. Lodge, 2009. Invasive species policy at the regional level: a multiple weak links problem. Fisheries 34: 373–380.CrossRefGoogle Scholar
  137. Peters, J. A. & D. M. Lodge, 2013. Habitat, predation, and coexistence between invasive and native crayfishes: prioritizing lakes for invasion prevention. Biological Invasions 15: 2489–2502.CrossRefGoogle Scholar
  138. Pintor, L. M. & D. A. Soluk, 2006. Evaluating the non-consumptive, positive effects of a predator in the persistence of an endangered species. Biological Conservation 130: 584–591.CrossRefGoogle Scholar
  139. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. BioScience 47: 769–784.CrossRefGoogle Scholar
  140. Primack, R. B., 2006. Essentials of conservation biology, 4th ed. Sinauer Associates Inc., Sunderland.Google Scholar
  141. Rabeni, C. F., M. Gossett & D. D. McClendon, 1995. Contribution of crayfish to benthic invertebrate production and trophic ecology of an Ozark stream. Freshwater Crayfish 10: 163–173.Google Scholar
  142. Rahel, F. J. & R. A. Stein, 1988. Complex predator-prey interactions and predator intimidation among crayfish, piscivorous fish, and small benthic fish. Oecologia 75: 94–98.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Reading, R. P., T. W. Clark & S. R. Kellert, 2002. Towards and endangered species reintroduction paradigm. Endangered Species Update 19: 142–146.Google Scholar
  144. Recsetar, M. S. & S. A. Bonar, 2015. Effectiveness of two commercial rotenone formulations in the eradication of virile crayfish Orconectes virilis. North American Journal of Fisheries Management 35: 616–620.CrossRefGoogle Scholar
  145. Reiber, C. L. & B. R. McMahon, 1998. The effects of progressive hypoxia on the crustacean cardiovascular system: a comparison of the freshwater crayfish, (Procambarus clarkii), and the lobster (Homarus americanus). Journal of Comparative Physiology. B 168: v168–176.CrossRefGoogle Scholar
  146. Rhoden, C. M., C. A. Taylor & W. E. Peterman, 2016a. Highway to heaven? Roadsides as preferred habitat for two narrowly endemic crayfish. Freshwater Science 35: 974–983.CrossRefGoogle Scholar
  147. Rhoden, C. M., C. A. Taylor & B. K. Wagner, 2016b. Habitat assessments and range updates for two rare Arkansas burrowing crayfishes: Fallicambarus harpi and Procambarus reimeri. Southeastern Naturalist 15: 448–458.CrossRefGoogle Scholar
  148. Richman, et al., 2015. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society B 370: 20140060.CrossRefGoogle Scholar
  149. Riegel, J. A., 1959. The systematics and distribution of crayfishes in California. California Fish Game 45: 29–50.Google Scholar
  150. Riley, S. C. & K. D. Fausch, 1995. Trout population response to habitat enhancement in six northern Colorado streams. Canadian Journal of Fisheries and Aquatic Sciences 52: 34–53.CrossRefGoogle Scholar
  151. Roell, M. J. & R. J. DiStefano, 2010. Effects of a conservative Rock Bass length limit on angler participation, sport fish populations, and crayfish prey in a Missouri Ozark stream. North American Journal of Fisheries Management 30: 552–564.CrossRefGoogle Scholar
  152. Rogowski, D. L., S. Sitko & S. A. Bonar, 2013. Optimising control of invasive crayfish using life-history information. Freshwater Biology 58: 1279–1291.CrossRefGoogle Scholar
  153. Rosland, R., O. Strand, M. Alunno-bruscia, C. Bacher & T. Stroheimer, 2009. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions. Journal of Sea Research 62: 49–61.CrossRefGoogle Scholar
  154. Roznere, I., G. T. Watters, B. A. Wolfe & M. Daly, 2017. Effects of relocation on metabolic profiles of freshwater mussels: metabolomics as a toll for improving conservation techniques. Aquatic Conservation Marine and Freshwater Ecosystems 27: 919–926.CrossRefGoogle Scholar
  155. Sass, G. G., S. R. Carpenter, J. W. Gaeta, J. F. Kitchell & T. D. Ahrenstorff, 2012. Whole-lake addition of coarse woody habitat: response of fish populations. Aquatic Sciences 74: 255–266.CrossRefGoogle Scholar
  156. Schuster, G. A., C. A. Taylor, & S. McGregor. The crayfishes of Alabama. University of Alabama Press, Tuscaloosa (in press).Google Scholar
  157. Sheldon, A. L., 1989. A reconnaissance of crayfish populations in western Montana. Montana Department of Fish, Wildlife, and Parks, Missoula.Google Scholar
  158. Shuranova, Z., Y. Burmistrov & R. Cooper, 2003. Bioelectric field potentials of the ventilatory muscles in the crayfish. Comparative Biochemistry and Physiology, Part A 134: 461–469.CrossRefGoogle Scholar
  159. Simcic, T., F. Pajk, M. Jaklic, A. Brancelj & A. Vrezec, 2014. The thermal tolerance of crayfish could be estimated from respiratory electron transport system activity. Journal of Thermal Biology 41: 21–30.PubMedCrossRefGoogle Scholar
  160. Simmons, J. W. & S. J. Fraley, 2010. Distribution, status, and life-history observations of crayfishes in western North Carolina. Southeastern Naturalist 9: 79–126.CrossRefGoogle Scholar
  161. Skelton, J., K. J. Farrell, R. P. Creed, B. W. Williams, C. Ames, B. S. Helms, J. Stoeckel & B. L. Brown, 2013. Servants, scoundrels, and hitchhikers: current understanding of the complex interactions between crayfish and their ectosymbiotic worms (Branchiobdellida). Freshwater Science 32: 1345–1357.CrossRefGoogle Scholar
  162. Skurdal, J. & T. Taugbøl, 1994. Do we need harvest regulations for European crayfish? Reviews in Fish Biology and Fisheries 4: 461–485.CrossRefGoogle Scholar
  163. Sneddon J. & J. Richert, 2011. Metals in crawfish, aquaculture and the Environment – a shared Destiny, Sladonja (Ed), ISBN: 978-953-307-749-9, InTech,
  164. Sousa, T., T. Domingos, J. C. Poggiale & S. A. L. M. Koojiman, 2010. Dynamic energy budget theory restores coherence in biology. Philosophical Transactions of the Royal Society B 365: 3413–3428.CrossRefGoogle Scholar
  165. Souty-Grosset, C. & J. D. Reynolds, 2009. Current ideas on methodological approaches in European crayfish conservation and restocking procedures. Knowledge and Management of Aquatic Ecosystems 394–395: 1–11.CrossRefGoogle Scholar
  166. Sowa, S. P., G. Annis, M. E. Morey & D. D. Diamond, 2007. A gap analysis and comprehensive conservation strategy for riverine ecosystems of Missouri. Ecological Monographs 77: 301–334.CrossRefGoogle Scholar
  167. Stafford, C. R., R. L. Richards & C. M. Anslinger, 2000a. The Bluegrass fauna and changes in Middle Holocene hunter-gatherer foraging in the southern Midwest. American Antiquity 65(2): 317–336.PubMedCrossRefPubMedCentralGoogle Scholar
  168. Stafford, C. R., R. L. Richards & C. M. Anslinger, 2000b. The Bluegrass fauna and changes in Middle Holocene hunter-gatherer foraging in the southern Midwest. American Antiquity 65: 317–336.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Statzner, B., E. Fièvet, J. Champagne, R. Morel & E. Herouin, 2000. Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnology and Oceanography 45: 1030–1040.CrossRefGoogle Scholar
  170. Stites, A. J., C. A. Taylor & E. J. Kessler, 2017. Trophic ecology of the North American crayfish genus Barbicambarus Hobbs, 1969 (Decapoda: Astacoidea: Cambaridae): evidence for a unique relationship between body size and trophic position. Journal of Crustacean Biology 37: 263–271.CrossRefGoogle Scholar
  171. Stoeckel, J. A., J. Morris, E. A. Ames, D. C. Glover, M. J. Vanni, W. Renwick & M. J. Gonzalez, 2012. Exposure times to the spring atrazine flush along a stream-reservoir system. Journal of the American Water Resources Association. 48: 616–634.CrossRefGoogle Scholar
  172. Stoeckel, J. A., B. Helms, M. Catalano, J. M. Miller, K. Gibson & P. M. Stewart, 2015. Field and model-based evaluation of a low-cost sampling protocol for a coordinated, crayfish life-history sampling effort. Freshwater Crayfish 21: 131–141.Google Scholar
  173. Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton & S. J. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54: 429–439.CrossRefGoogle Scholar
  174. Styrishave, B. & M. H. Depledge, 1996. Evaluation of mercury-induced changes in circadian heart rate rhythms in the crayfish, Astacus astacus as an early predictor of mortality. Comparative Biochemistry and Physiology, Part A 115: 349–356.CrossRefGoogle Scholar
  175. Taylor, C. A. & T. G. Anton, 1999. Distributional and ecological notes on some of Illinois’ burrowing crayfishes. Transactions of Illinois State Academy of Science 92: 137–145.Google Scholar
  176. Taylor, C. A., M. L. Warren Jr., J. F. Fitzpatrick Jr., H. H. Hobbs III, R. F. Jezerinac, W. L. Pflieger & H. Robison, 1996. Conservation status of crayfishes of the United States and Canada. Fisheries 21: 25–38.CrossRefGoogle Scholar
  177. Taylor, C. A., G. A. Schuster, J. E. Cooper, R. J. DiStefano, A. G. Eversole, P. Hamr, H. H. Hobbs III, H. W. Robison, C. E. Skelton & R. F. Thoma, 2007. A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32: 372–389.CrossRefGoogle Scholar
  178. Taylor, C., A., G.A. Schuster, C. L. Graydon & P. E. Moler, 2011. Distribution and conservation status of the Rusty Gravedigger, Cambarus miltus, a poorly known Gulf Coastal crayfish. Southeastern Naturalist 10: 547–552.CrossRefGoogle Scholar
  179. Thomas, C. L. & C. A. Taylor, 2013. Scavenger or predator? Examining a potential predator–prey relationship between crayfish and benthic fish in stream food webs. Freshwater Science 32: 1309–1317.CrossRefGoogle Scholar
  180. Threinen, C. W., 1958. A summary of observations on the commercial harvest of crayfish in northwestern Wisconsin, with notes on the life history of Orconectes virilis. Wisconsin Department of Natural Resources, Fisheries Management Division Report Number: 2.Google Scholar
  181. Tréguier, A., J. M. Roussel, N. Bélouard & J. M. Paillisson, 2018. Is it a hindrance for an invasive aquatic species to spread across scattered habitat patches? Aquatic Conservation: Marine and Freshwater Ecosystems 28: 610–618.CrossRefGoogle Scholar
  182. Trexler, J. C. & C. W. Goss, 2009. Aquatic fauna as indicators for Everglades restoration: applying dynamic targets in assessments. Ecological Indicators 9: 108–119.CrossRefGoogle Scholar
  183. U.S. Department of Interior, US Fish and Wildlife Service. 04 July 2016. Endangered and threatened wildlife and plants; threatened species status for the Big Sandy Crayfish and endangered species status for the Guyandotte River Crayfish. Federal Register, 50 CFR 17, 81 FR 20449–200481.Google Scholar
  184. U.S. Fish and Wildlife Service (USFWS), 1998. Recovery plan for the Shasta crayfish (Pacifastacus fortis). U.S. Fish and Service, Portland.Google Scholar
  185. U.S. Fish and Wildlife Service (USFWS), 2009. Shasta crayfish (Pacifastacus fortis) 5-year review: summary and evaluation. U.S. Fish and Wildlife Service, Sacramento Field Office, Sacramento.Google Scholar
  186. U.S. Fish and Wildlife Service (USFWS), 2017. Nashville crayfish (Orconectes shoupi) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service, Cookeville Field Office, Cookeville.Google Scholar
  187. Udalova, G. P., S. V. Kholodkevich, B. P. Fedotov & E. L. Kornienko, 2012. Changes in heart rate and circadian rhythm as physiological biomarkers for estimation of functional state of crayfish PontAstacus leptodactylus Esch. upon acidification of the environment. Inland Water Biology. 5: 119–127.CrossRefGoogle Scholar
  188. Usio, N., 2000. Effects of crayfish on leaf processing and invertebrate colonisation of leaves in a headwater stream: decoupling of a trophic cascade. Oecologia 124: 608–614.PubMedCrossRefGoogle Scholar
  189. Vander Zanden, M. J., G. J. Hansen, S. N. Higgins & M. S. Kornis, 2010. A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research 36: 199–205.CrossRefGoogle Scholar
  190. Villarreal, H., 1991. A partial energy budget for the Australian crayfish Cherax tenuimanus. Journal of the World Aquaculture Society 22: 252–259.CrossRefGoogle Scholar
  191. Warren Jr., M. L., B. M. Burr, S. J. Walsh, H. L. Bart Jr., R. C. Cashner, D. A. Etnier, B. J. Freeman, B. R. Kuhajda, R. L. Mayden, H. R. Robison, S. T. Ross & W. C. Starnes, 2000. Diversity, distribution, and conservation status of the native freshwater fishes of the southern United States. Fisheries 25: 7–31.CrossRefGoogle Scholar
  192. Welch, S. M. & A. G. Eversole, 2006. The occurrence of primary burrowing crayfish in terrestrial habitat. Biological Conservation 130: 458–464.CrossRefGoogle Scholar
  193. Welch, S. M., J. L. Waldron, A. G. Eversole & J. C. Simoes, 2008. Seasonal variation and ecological effects of Camp Shelby burrowing crayfish (Fallicambarus gordoni) burrows. American Midland Naturalist 159: 378–384.CrossRefGoogle Scholar
  194. Westhoff, J. T. & A. E. Rosenberger, 2016. A global review of freshwater crayfish temperature tolerance, preference, and optimal growth. Reviews in Fish Biology and Fisheries. 26: 329–349.CrossRefGoogle Scholar
  195. Wheatly, M. G. & A. T. Gannon, 1995. Ion regulation in crayfish: freshwater adaptations and the problem of molting. Integrative and Comparative Biology 1: 49–59.Google Scholar
  196. Wheeler, A. P. & M. S. Allen, 2003. Habitat and diet partitioning between shoal bass and largemouth bass in the Chipola River, Florida. Transactions of the American Fisheries Society 132: 438–449.CrossRefGoogle Scholar
  197. Williams, D. D., N. E. Williams & H. B. N. Hynes, 1974. Observations on the life history and burrow construction of the crayfish Cambarus fodiens (Cottle) in a temporary stream in southern Ontario. Canadian Journal of Zoology 52: 365–370.CrossRefGoogle Scholar
  198. Williams, J. D., M. L. Warren Jr., K. S. Cummings, J. L. Harris & R. J. Neves, 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18: 6–22.CrossRefGoogle Scholar
  199. Wolff, P. J., C. A. Taylor, E. J. Heske & R. L. Schooley, 2015. Habitat selection by American mink during summer is related to hotspots of crayfish prey. Wildlife Biology 21: 9–17.CrossRefGoogle Scholar
  200. Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Märker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.CrossRefGoogle Scholar
  201. Zedler, J. B., 2000. Progress in wetland restoration ecology. Trends in Ecology & Evolution 15: 402–407.CrossRefGoogle Scholar
  202. Zeng, Y., K. Y. Chong, E. K. Grey, D. M. Lodge & D. C. Yeo, 2015. Disregarding human pre-introduction selection can confound invasive crayfish risk assessments. Biological Invasions 17: 2373–2385.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Illinois Natural History SurveyPrairie Research InstituteChampaignUSA
  2. 2.Missouri Department of ConservationColumbiaUSA
  3. 3.Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.School of Fisheries, Aquaculture, and Aquatic SciencesAuburn UniversityAuburnUSA

Personalised recommendations