, Volume 843, Issue 1, pp 155–172 | Cite as

Main drivers of freshwater fish diversity across extra-tropical Southern Hemisphere rivers

  • Shaw Nozaki LacyEmail author
  • Derek Corcoran
  • Dominique Alò
  • Janeth Lessmann
  • Francisco Meza
  • Pablo A. Marquet
Primary Research Paper


Many multi-regional studies investigating how available habitat area, energy availability, and historical refugia drive freshwater fish diversity have emphasized Northern Hemisphere and tropical areas. Furthermore, while many such studies have examined diversity drivers on basin-scale species richness (i.e., gamma diversity), they typically have not evaluated beta diversity or phylogenetic diversity nor included representative numbers of Southern Hemisphere basins unassociated with tropical rainforests. Here, we examine 784 basins and present the first comprehensive evaluation of the driving effects of gamma diversity and the patterns of beta and phylogenetic diversity across extra-tropical Southern Hemisphere (ETSH) freshwater fish communities. We find that ETSH gamma diversity does not show a strong historical legacy associated with glaciations, and is influenced more by factors related with habitat area and available energy. Additionally, ETSH regions show high beta and phylogenetic diversity and low levels of diadromy, except New Zealand, which shows narrow species diversity and cosmopolitan species dominance. Finally, phylogenetic diversity indicates how the endemism of the three ETSH Mediterranean-climate regions is characteristic of long-term isolation and persistence. These results demonstrate ETSH freshwater fish diversity to be distinct from both the tropics and their Northern Hemisphere latitudinal counterparts.


Gamma diversity Beta diversity Phylogenetic diversity Path analysis 



SNL, PAM, and FM acknowledge support from the Office of the Vicerector for Research at the Pontificia Universidad Católica de Chile and Chilean Education Ministry grant MECESUP PUC 2013. PAM acknowledges support from Project AFB-17008. DA acknowledges support from the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) Doctoral Fellowship 21150634.

Supplementary material

10750_2019_4044_MOESM1_ESM.pdf (33.5 mb)
Supplementary material 1 (PDF 34256 kb)
10750_2019_4044_MOESM2_ESM.csv (1.6 mb)
Supplementary material 2 (CSV 1595 kb)


  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. Sabaj Pérez, P. Petry, M. H. S. Pérez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414.Google Scholar
  2. Adams, J., 1981. Earthquake-dammed lakes in New Zealand. Geology 9: 215.Google Scholar
  3. Allen, G. H. & T. M. Pavelsky, 2018. Global extent of rivers and streams. Science 588: 585–588.Google Scholar
  4. Alvarez-Cobelas, M., D. G. Angeler, S. Sánchez-Carrillo & G. Almendros, 2012. A worldwide view of organic carbon export from catchments. Biogeochemistry 107(1–3): 275–293.Google Scholar
  5. Antonelli, A., 2017. Drivers of bioregionalization. Nature Ecology and Evolution 1: 1–2.Google Scholar
  6. Bailey, R. M. & G. R. Smith, 1981. Origin and geography of the fish fauna of the Laurentian great lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 38: 1539–1561.Google Scholar
  7. Boettiger, C., D. T. Lang & P. C. Wainwright, 2012. rfishbase: exploring, manipulating and visualizing FishBase data from R. Journal of Fish Biology 81: 2030–2039.PubMedGoogle Scholar
  8. Bonada, N. & V. H. Resh, 2013. Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719: 1–29.Google Scholar
  9. Brosse, S., O. Beauchard, S. Blanchet, H. H. Dürr, G. Grenouillet, B. Hugueny, C. Lauzeral, F. Leprieur, P. A. Tedesco, S. Villéger & T. Oberdorff, 2013. Fish-SPRICH: a database of freshwater fish species richness throughout the World. Hydrobiologia 700: 343–349.Google Scholar
  10. Burridge, C. P., D. Craw & J. M. Waters, 2007. An empirical test of freshwater vicariance via river capture. Molecular Ecology 16: 1883–1895.PubMedGoogle Scholar
  11. Calderón-Patrón, J. M., I. Goyenechea, R. Ortiz-Pulido, J. Castillo-Cerón, N. Manriquez, A. Ramírez-Bautista, A. E. Rojas-Martínez, G. Sánchez-Rojas, I. Zuria & C. E. Moreno, 2016. Beta diversity in a highly heterogeneous area: disentangling species and taxonomic dissimilarity for terrestrial vertebrates. PLoS ONE 11: 160438.Google Scholar
  12. Carvajal-Quintero, J., F. Villalobos, T. Oberdorff, G. Grenouillet, S. Brosse, B. Hugueny, C. Jézéquel, & P. A. Tedesco, 2019. Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size. Proceedings of the National Academy of Sciences 201902484.Google Scholar
  13. Chakona, G., E. R. Swartz & A. Chakona, 2018. The status and distribution of a newly identified endemic galaxiid in the eastern Cape Fold Ecoregion, of South Africa. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 55–67.Google Scholar
  14. Cid, N., N. Bonada, S. Carlson, T. Grantham, A. Gasith & V. Resh, 2017. High variability is a defining component of mediterranean-climate rivers and their biota. Water 9: 52.Google Scholar
  15. Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi & J. T. Teller, 2001. Freshwater forcing of abrupt climate change during the last glaciation. Science 293: 283–287.PubMedGoogle Scholar
  16. Cole, J. J. & N. F. Caraco, 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research 52(1): 101–110.Google Scholar
  17. Craw, D., P. Upton, C. P. Burridge, G. P. Wallis & J. M. Waters, 2015. Rapid biological speciation driven by tectonic evolution in New Zealand. Nature Geoscience 9: 140–144.Google Scholar
  18. Davies, P. M. & B. A. Stewart, 2013. Aquatic biodiversity in the Mediterranean climate rivers of southwestern Australia. Hydrobiologia 719: 215–235.Google Scholar
  19. De Fries, R. S., M. M. Hansen, J. R. G. Townshend & R. Sohlberg, 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing 19: 3141–3168.Google Scholar
  20. de Moor, F. C. & J. A. Day, 2013. Aquatic biodiversity in the mediterranean region of South Africa. Hydrobiologia 719: 237–268.Google Scholar
  21. Dias, M. S., T. Oberdorff, B. Hugueny, F. Leprieur, C. Jézéquel, J. F. Cornu, S. Brosse, G. Grenouillet & P. A. Tedesco, 2014. Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters 17: 1130–1140.PubMedGoogle Scholar
  22. D’Odorico, P. & A. Porporato, 2006. Dryland Ecohydrology. Springer, Dordrecht.Google Scholar
  23. Döll, P., F. Kaspar & B. Lehner, 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology 270: 105–134.Google Scholar
  24. Downing, J. A., J. J. Cole, C. M. Duarte, J. J. Middelburg, J. M. Melack, Y. T. Prairie, P. L. Kortelainen, R. G. Striegl, W. H. McDowell & L. J. Tranvik, 2012. Global abundance and size distribution of streams and rivers. Inland Waters 2: 229–236.Google Scholar
  25. Evans, K. L., P. H. Warren & K. J. Gaston, 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews 80(1): 1–25.PubMedGoogle Scholar
  26. Faith, D. P., 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1–10.Google Scholar
  27. Figueroa, R., N. Bonada, M. Guevara, P. Pedreros, F. Correa-Araneda, M. E. Díaz & V. H. Ruiz, 2013. Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia 719: 269–289.Google Scholar
  28. Francis, C. & F. Sheldon, 2002. River Red Gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia 48: 113–124.Google Scholar
  29. Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.PubMedGoogle Scholar
  30. Graham, C. H. & P. V. A. Fine, 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters 11: 1265–1277.PubMedGoogle Scholar
  31. Griffiths, D., 2015. Connectivity and vagility determine spatial richness gradients and diversification of freshwater fish in North America and Europe. Biological Journal of the Linnean Society 116: 773–786.Google Scholar
  32. Griffiths, D., 2018. Why does freshwater fish species richness differ between Pacific and Atlantic drainages of the Americas? Journal of Biogeography 45: 784–792.Google Scholar
  33. Gutiérrez, J. R., F. López-Cortes & P. A. Marquet, 1998. Vegetation in an altitudinal gradient along the Río Loa in the Atacama Desert of northern Chile. Journal of Arid Environments 40: 383–399.Google Scholar
  34. Henseler, J. & M. Sarstedt, 2013. Goodness-of-fit indices for partial least squares path modeling. Computational Statistics 28: 565–580.Google Scholar
  35. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.Google Scholar
  36. Hugueny, B., 1989. West African rivers as biogeographic islands: species richness of fish communities. Oecologia 79: 236–243.PubMedGoogle Scholar
  37. Imhoff, M. L., L. Bounoua, T. Ricketts, C. Loucks, R. Harriss & W. T. Lawrence, 2004. Global patterns in human consumption of net primary production. Nature 429: 870–873.PubMedGoogle Scholar
  38. IPCC, 2014. IPCC Fifth Assessment Report (AR5)—The physical science basis. IPCC.Google Scholar
  39. Iwasaki, Y., M. Ryo, P. Sui & C. Yoshimura, 2012. Evaluating the relationship between basin-scale fish species richness and ecologically relevant flow characteristics in rivers worldwide. Freshwater Biology 57: 2173–2180.Google Scholar
  40. Jones, P. E., J. Augspurger & G. P. Closs, 2017. Landscape-scale life-history gradients in New Zealand freshwater fish. Freshwater Biology 62: 570–581.Google Scholar
  41. Joyce, D. A., D. H. Lunt, M. J. Genner, G. F. Turner, R. Bills & O. Seehausen, 2011. Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology Elsevier 21: R108–R109.Google Scholar
  42. Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.PubMedPubMedCentralGoogle Scholar
  43. Kerezsy, A., S. R. Balcombe, M. Tischler & A. H. Arthington, 2013. Fish movement strategies in an ephemeral river in the Simpson Desert, Australia. Austral Ecology 38: 798–808.Google Scholar
  44. Landis, C. A., H. J. Campbell, J. G. Begg, D. C. Mildenhall, A. M. Paterson & S. A. Trewick, 2008. The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145: 173–197.Google Scholar
  45. Leathwick, J. R., J. Elith, W. L. Chadderton, D. Rowe & T. Hastie, 2008. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.Google Scholar
  46. Lehner, B. & G. Grill, 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes 27: 2171–2186.Google Scholar
  47. Leigh, C., F. Sheldon, R. T. Kingsford & A. H. Arthington, 2010. Sequential floods drive “booms” and wetland persistence in dryland rivers: a synthesis. Marine and Freshwater Research 61: 896.Google Scholar
  48. Leprieur, F., P. A. Tedesco, B. Hugueny, O. Beauchard, H. H. Dürr, S. Brosse & T. Oberdorff, 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14: 325–334.PubMedGoogle Scholar
  49. Lévêque, C., T. Oberdorff, D. Paugy, M. L. J. J. Stiassny & P. A. Tedesco, 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.Google Scholar
  50. Losos, J. B. & D. Schluter, 2000. Analysis of an evolutionary species-area relationship. Nature 408: 847–850.PubMedGoogle Scholar
  51. Mace, G. M., 2003. Preserving the tree of life. Science 300: 1707–1709.PubMedGoogle Scholar
  52. Mason, N. W. H., P. Irz, C. Lanoiselée, D. Mouillot & C. Argillier, 2008. Evidence that niche specialization explains species–energy relationships in lake fish communities. Journal of Animal Ecology 77: 285–296.PubMedGoogle Scholar
  53. McDowall, R. M., 1996. Volcanism and freshwater fish biogeography in the northeastern North Island of New Zealand. Journal of Biogeography 23: 139–148.Google Scholar
  54. McDowall, R. M., 2002. Accumulating evidence for a dispersal biogeography of southern cool temperate freshwater fishes. Journal of Biogeography. 29: 207–219.Google Scholar
  55. McDowall, R. M., 2010. Historical and ecological context, pattern and process, in the derivation of New Zealand’s freshwater fish fauna. New Zealand Journal of Ecology 34: 185–194.Google Scholar
  56. Mcgarvey, D. J. & G. M. Ward, 2008. Scale dependence in the species-discharge relationship for fishes of the southeastern U.S.A. Freshwater Biology 53: 2206–2219.Google Scholar
  57. Messager, M. L., B. Lehner, G. Grill, I. Nedeva & O. Schmitt, 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications 7: 13603.PubMedPubMedCentralGoogle Scholar
  58. Minns, C. K., 1990. Patterns of distribution and association of freshwater fish in New Zealand. New Zealand Journal of Marine and Freshwater Research 24: 31–44.Google Scholar
  59. Mittelbach, G. G., D. W. Schemske, H. V. Cornell, A. P. Allen, J. M. Brown, M. B. Bush, S. P. Harrison, A. H. Hurlbert, N. Knowlton, H. A. Lessios, C. M. McCain, A. R. McCune, L. A. McDade, M. A. McPeek, T. J. Near, T. D. Price, R. E. Ricklefs, K. Roy, D. F. Sax, D. Schluter, J. M. Sobel & M. Turelli, 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters. 10: 315–331.PubMedGoogle Scholar
  60. Miyazono, S. & C. M. Taylor, 2016. Fish species incidence patterns in naturally fragmented Chihuahuan Desert streams. Ecology of Freshwater Fish 25: 545–552.Google Scholar
  61. Muehlbauer, J. D., S. F. Collins, M. W. Doyle & K. Tockner, 2014. How wide is a stream? Spatial extent of the potential “stream signature” in terrestrial food webs using meta-analysis. Ecology 95: 44–55.PubMedGoogle Scholar
  62. Nicholson, S., 2000. The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change 26: 137–158.Google Scholar
  63. Oberdorff, T., J.-F. Guegan, B. Hugueny, T. Oberdoff, J.-F. Guegan, B. Hugueny, T. Oberdorff, J.-F. Guegan & B. Hugueny, 1995. Global scale patterns of fish species richness in rivers. Ecography 18: 345–352.Google Scholar
  64. Oberdorff, T., B. Hugueny, J.-F. Guegan & J. F. Guégan, 1997. Is there an influence of historical events on contemporary fish species richness in rivers? Comparisons between Western Europe and North America. Journal of Biogeography 24: 461–467.Google Scholar
  65. Oberdorff, T., P. A. Tedesco, B. Hugueny, F. Leprieur, O. Beauchard, S. Brosse & H. H. Dürr, 2011. Global and regional patterns in riverine fish species richness: a review. International Journal of Ecology 2011: 1–12.Google Scholar
  66. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.Google Scholar
  67. Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.Google Scholar
  68. Pérez, C. A., M. D. DeGrandpre, N. A. Lagos, G. S. Saldías, E.-K. Cascales & C. A. Vargas, 2015. Influence of climate and land use in carbon biogeochemistry in lower reaches of rivers in central southern Chile: implications for the carbonate system in river-influenced rocky shore environments. Journal of Geophysical Research: Biogeosciences 120: 673–692.Google Scholar
  69. Pool, T. K., G. Grenouillet & S. Villéger, 2014. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and Distributions 20: 1235–1244.Google Scholar
  70. R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  71. Rabosky, D. L., J. Chang, P. O. Title, P. F. Cowman, L. Sallan, M. Friedman, K. Kaschner, C. Garilao, T. J. Near, M. Coll & M. E. Alfaro, 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559: 392–395.PubMedGoogle Scholar
  72. Rangel, T. F., N. R. Edwards, P. B. Holden, J. A. F. Diniz-Filho, W. D. Gosling, M. T. P. Coelho, F. A. S. Cassemiro, C. Rahbek & R. K. Colwell, 2018. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 361: eaar5452.Google Scholar
  73. Ray, N. & J. M. M. Adams, 2001. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000 BP). Internet Archaeology 11: 15.Google Scholar
  74. Revell, L. J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.Google Scholar
  75. Reyjol, Y., B. Hugueny, D. Pont, P. G. Bianco, U. Beier, N. Caiola, F. Casals, I. Cowx, A. Economou, T. Ferreira, G. Haidvogl, R. Noble, A. de Sostoa, T. Vigneron, T. Virbickas & T. Virbickas, 2007. Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography 16: 65–75.Google Scholar
  76. Rigdon, E. E., 2012. Rethinking partial least squares path modeling. In praise of simple methods. Long Range Planning 45: 341–358.Google Scholar
  77. Roberts, T. R., 1975. Geographical distribution of African freshwater fishes. Zoological Journal of the Linnean Society 57: 249–319.Google Scholar
  78. Ruzzante, D. E., S. J. Walde, V. E. Cussac, M. L. Dalebout, J. Seibert, S. Ortubay & E. M. Habit, 2006. Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Molecular Ecology 15: 2949–2968.PubMedGoogle Scholar
  79. Ruzzante, D. E., S. J. Walde, J. C. Gosse, V. E. Cussac, E. Habit, T. S. Zemlak & E. D. M. Adams, 2008. Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography. Molecular Ecology 17: 2234–2244.PubMedGoogle Scholar
  80. Samarasin, P., C. K. Minns, B. J. Shuter, W. M. Tonn, M. D. Rennie & C. Ramcharan, 2015. Fish diversity and biomass in northern Canadian lakes: northern lakes are more diverse and have greater biomass than expected based on species–energy theory. Canadian Journal of Fisheries and Aquatic Sciences 72: 226–237.Google Scholar
  81. Sanchez, G., L. Trinchera, & G. Russolillo, 2017. plspm: tools for partial least squares path modeling (PLS-PM).
  82. Sarstedt, M., C. M. Ringle, J. Henseler & J. F. Hair, 2014. On the emancipation of PLS-SEM: a commentary on rigdon (2012). Long Range Planning 47: 154–160.Google Scholar
  83. Sarstedt, M., J. F. Hair, C. M. Ringle, K. O. Thiele & S. P. Gudergan, 2016. Estimation issues with PLS and CBSEM: where the bias lies! Journal of Business Research 69: 3998–4010.Google Scholar
  84. Sernapesca, 2015. Peces Continentales de Chile. Valparaiso.Google Scholar
  85. Sood, A. & V. Smakhtin, 2015. Global hydrological models: a review. Hydrological Sciences Journal 60: 549–565.Google Scholar
  86. Stankiewicz, J. & M. J. de Wit, 2006. A proposed drainage evolution model for Central Africa—did the Congo flow east? Journal of African Earth Sciences 44: 75–84.Google Scholar
  87. Svenning, J.-C., W. L. Eiserhardt, S. Normand, A. Ordonez & B. Sandel, 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics 46: 551–572.Google Scholar
  88. Swenson, N. G., 2009. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4: e4390.PubMedPubMedCentralGoogle Scholar
  89. Tedesco, P. A., T. Oberdorff, C. A. Lasso, M. Zapata & B. Hugueny, 2005. Evidence of history in explaining diversity patterns in tropical riverine fish. Journal of Biogeography 32: 1899–1907.Google Scholar
  90. Tedesco, P. A., O. Beauchard, R. Bigorne, S. Blanchet, L. Buisson, L. Conti, J.-F. Cornu, M. S. Dias, G. Grenouillet, B. Hugueny, C. Jézéquel, F. Leprieur, S. Brosse & T. Oberdorff, 2017. A global database on freshwater fish species occurrence in drainage basins. Scientific Data 4: 170141.PubMedPubMedCentralGoogle Scholar
  91. Tisseuil, C., J. F. Cornu, O. Beauchard, S. Brosse, W. Darwall, R. Holland, B. Hugueny, P. A. Tedesco & T. Oberdorff, 2013. Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology 82: 365–376.PubMedGoogle Scholar
  92. Tweddle, D., 2010. Overview of the Zambezi river system: its history, fish fauna, fisheries, and conservation. Aquatic Ecosystem Health and Management 13: 224–240.Google Scholar
  93. Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.Google Scholar
  94. Vannote, R. L. L., W. G. G. Minshall, K. W. W. Cummins, J. R. R. Sedell, C. E. E. Cushing, G. W. Minshall, K. W. W. Cummins, J. R. R. Sedell & C. E. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.Google Scholar
  95. Vila, I. & E. Habit, 2015. Current situation of the fish fauna in the Mediterranean region of Andean river systems in Chile. FiSHMED Fishes in Mediterranean Environments 1–19.Google Scholar
  96. Vila, I., R. Pardo, B. Dyer & E. M. Habit, 2006. Peces límnicos: diversidad, origen y estado de conservación In Vila, I., A. Veloso, R. Schlatter & C. Ramírez (eds), Macrófitas y vertebrados de los sistemas límnicos de Chile. Editorial Universitaria: 186.Google Scholar
  97. Walker, K. F., F. Sheldon & J. T. Puckridge, 1995. A perspective on dryland river ecosystems. Regulated Rivers: Research & Management 11: 85–104.Google Scholar
  98. Wang, Y., Y. Shen, Y. Chen & Y. Guo, 2013. Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 6: 927–936.Google Scholar
  99. Waters, J. M. & G. P. Wallis, 2000. Across the Southern Alps by river capture? Freshwater fish phylogeography in South Island, New Zealand. Molecular Ecology 9: 1577–1582.PubMedGoogle Scholar
  100. Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.Google Scholar
  101. Wickham, H., 2016. tidyverse: easily install and load “Tidyverse” packages. R package version 1.0.0.
  102. Williamson, M., 1988. Relationship of species number to area, distance and other variables. Analytical Biogeography 91–115.Google Scholar
  103. Wright, D. H., 1983. Species-energy theory: an extension of species-area theory. Oikos 41: 496.Google Scholar
  104. Xenopoulos, M. A. & D. M. Lodge, 2006. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. Ecology 87: 1907–1914.PubMedGoogle Scholar
  105. Zhang, Y., J. Yu, P. Wang & G. Fu, 2011. Vegetation responses to integrated water management in the Ejina basin, northwest China. Hydrological Processes 25: 3448–3461.Google Scholar
  106. Zomer, R. J., A. Trabucco, D. A. Bossio & L. V. Verchot, 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment 126: 67–80.Google Scholar
  107. Zorn, T. G., P. W. Seelbach, & M. J. Wiley, 2009. Relationships between habitat and fish density in Michigan streams. State of Michigan Department of Natural Resources, Fisheries Research Report 2091Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Climate StudiesSchool for Field StudiesPuerto NatalesChile
  2. 2.Centro de Cambio Global (PUCGlobal)Pontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de Ecología, Facultad de Ciencias BiológicasPontificia, Universidad Católica de ChileSantiagoChile
  4. 4.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  5. 5.Laboratorio de Ecoinformática, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación Biodiversidad y TerritorioUniversidad Austral de ChileValdiviaChile
  6. 6.Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
  7. 7.Laboratorio Internacional en Cambio Global (LINCGlobal, CSIC-PUC-UFRJ)Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations