, Volume 843, Issue 1, pp 107–123 | Cite as

Species-specific fragmentation rate and colonization potential partly explain the successful spread of aquatic plants in lowland streams

  • Patrick HeidbüchelEmail author
  • Maria Sachs
  • Nils Stanik
  • Andreas Hussner
Primary Research Paper


The vegetative spread potential of aquatic plant species is largely based on the quantity of dispersed plant fragments (propagule pressure) and their potential for regrowth and establishment, i.e., fragment regeneration and colonization. In streams, fragment dispersal is of particular significance as the exposure of plants to flow facilitates fragmentation and downstream drift of fragments. We conducted field investigations to quantify the relevance of fragment dispersal and the species-specific propagule pressure due to fragmentation in five small to medium-sized German streams. These field surveys were combined with determination of the potential for regeneration/colonization of fragments collected in the field indicated by relative root formation under standardized conditions. In general, the number of drifting fragments tended to increase with larger stream size. We documented species-specific differences in fragmentation rate, which contributed to weak correlations between the number of drift units and specific plant cover within four streams. The overall likelihood for root formation increased significantly with increasing fragment size and was highest for the invasive Elodea nuttallii (70% of fragments). We conclude that the fragment dispersal capacity in streams is highly species-specific and that propagule pressure alone cannot explain the successful spread of invasive species like Myriophyllum heterophyllum.


Aquatic macrophytes Fragment dispersal Hydrochory Invasive species Propagule pressure Regeneration 



This work was financially supported by the Deutsche Bundesstiftung Umwelt (DBU, Grant Numbers 20016/450, PH and 20016/464, NS). We thank the Editor and two Anonymous Reviewers for comments that helped to improve the manuscript.

Supplementary material

10750_2019_4041_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)


  1. Anderson, L. W. J., 1998. Dissipation and Movement of Sonar and Komeen Following Typical Applications for Control of Egeria densa in the Sacramento/San Joaquin Delta, and Production and Viability of E. densa Fragments Following Mechanical Harvesting (1997/1998). Environmental Impact Report. California Department of Boating and Waterways: 79.Google Scholar
  2. Bakker, E. S., K. A. Wood, J. F. Pagès, G. F. (Ciska) Veen, M. J. A. Christianen, L. Santamaría, B. A. Nolet & S. Hilt, 2016. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany 135: 18–36.Google Scholar
  3. Barrat-Segretain, M. H., 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123: 13–37.Google Scholar
  4. Barrat-Segretain, M. H. & G. Bornette, 2000. Regeneration and colonization abilities of aquatic plant fragments: effect of disturbance seasonality. Hydrobiologia 421: 31–39.Google Scholar
  5. Barrat-Segretain, M. H., G. Bornette & A. Hering-Vilas-Bôas, 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquatic Botany 60: 201–211.Google Scholar
  6. Barrat-Segretain, M. H., C. P. Henry & G. Bornette, 1999. Regeneration and colonization of aquatic plant fragments in relation to the disturbance frequency of their habitats. Archiv für Hydrobiologie 145: 111–127.Google Scholar
  7. Barrat-Segretain, M.-H., A. Elger, P. Sagnes & S. Puijalon, 2002. Comparison of three life-history traits of invasive Elodea canadensis Michx. and Elodea nuttallii (Planch.). Aquatic Botany 74: 299–313.Google Scholar
  8. Bickel, T. O., 2017. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana. Hydrobiologia 788: 157–168.Google Scholar
  9. Bociag, K., A. Gałka, T. Łazarewicz & J. Szmeja, 2009. Mechanical strength of stems in aquatic macrophytes. Acta Societatis Botanicorum Poloniae 78: 181–187.Google Scholar
  10. Boedeltje, G., J. P. Bakker, R. M. Bekker, J. M. van Groenendael & M. Soesbergen, 2003. Plant dispersal in a lowland stream in relation to occurence and three specific life-history traits of the species in the species pool. Journal of Ecology 91: 855–866.Google Scholar
  11. Boedeltje, G., J. P. Bakker, A. Ten Brinke, J. M. van Groenendael & M. Soesbergen, 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796.Google Scholar
  12. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.Google Scholar
  13. Bowes, G., A. S. Holaday & W. T. Haller, 1979. Seasonal variation in the biomass, tuber density, and photosynthetic metabolism of Hydrilla in three Florida lakes. Journal of Aquatic Plant Management 17: 61–65.Google Scholar
  14. Cook, C. D. K., 1985. Range extensions of aquatic vascular plant species. Journal of Aquatic Plant Management 23: 1–6.Google Scholar
  15. Cook, C. D. K. & K. Urmi-König, 1985. A revision of the genus Elodea (Hydrocharitaceae). Aquatic Botany 21: 111–156.Google Scholar
  16. Cornacchia, L., D. van der Wal, J. van de Koppel, S. Puijalon, G. Wharton & T. J. Bouma, 2019. Flow-divergence feedbacks control propagule retention by in-stream vegetation: the importance of spatial patterns for facilitation. Aquatic Sciences 81: 17.Google Scholar
  17. Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.Google Scholar
  18. Fleming, J. P. & E. D. Dibble, 2014. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 22–37.Google Scholar
  19. Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400: 369–378.PubMedGoogle Scholar
  20. Fritschler, N., A. Hussner & J. Busch, 2008. Regenerationsfähigkeit von indigenen und neophytischen Wasserpflanzen. Deutsche Gesellschaft für Limnologie (DGL)-Tagungsbericht 2007: 199–203.Google Scholar
  21. Grace, J. B., 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.Google Scholar
  22. Green, A. J., 2016. The importance of waterbirds as an overlooked pathway of invasion for alien species. Diversity and Distributions 22: 239–247.Google Scholar
  23. Heidbüchel, P. & A. Hussner, 2019. Fragment type and water depth determine the regeneration and colonization success of submerged aquatic macrophytes. Aquatic Sciences 81: 6.Google Scholar
  24. Heidbüchel, P., K. Kuntz & A. Hussner, 2016. Alien aquatic plants do not have higher fragmentation rates than native species: a field study from the River Erft. Aquatic Sciences 78: 767–777.Google Scholar
  25. Heidbüchel, P., P. Jahns & A. Hussner, 2019. Chlorophyll fluorometry sheds light on the role of desiccation resistance for vegetative overland dispersal of aquatic plants. Freshwater Biology 64: 1–15.Google Scholar
  26. Hussner, A., 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Research 49: 506–515.Google Scholar
  27. Hussner, A., D. Hofstra, P. Jahns & J. Clayton, 2015. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211.Google Scholar
  28. Hussner, A., T. Mettler-Altmann, A. P. M. Weber & K. Sand-Jensen, 2016. Acclimation of photosynthesis to supersaturated CO2 in aquatic plant bicarbonate users. Freshwater Biology 61: 1720–1732.Google Scholar
  29. Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Botany 136: 112–137.Google Scholar
  30. Jacobs, M. J. & H. J. MacIsaac, 2009. Modelling spread of the invasive macrophyte Cabomba caroliniana. Freshwater Biology 54: 296–305.Google Scholar
  31. Johansson, M. & C. Nilsson, 1993. Hydrochory, population dynamics and distribution of the clonal aquatic plant Ranunculus lingua. Journal of Ecology 81: 81–91.Google Scholar
  32. Kuntz, K., P. Heidbüchel & A. Hussner, 2014. Effects of water nutrients on regeneration capacity of submerged aquatic plant fragments. Annales de Limnologie – International Journal of Limnology 50: 155–162.Google Scholar
  33. Langeland, K. A. & D. L. Sutton, 1980. Regrowth of Hydrilla from axillary buds. Journal of Aquatic Plant Management 18: 27–29.Google Scholar
  34. Liffen, T., A. M. Gurnell, M. T. O’Hare, N. Pollen-Bankhead & A. Simon, 2011. Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: implications for fine sediment retention in low energy rivers. Ecological Engineering 37: 1925–1931.Google Scholar
  35. Łoboda, A. M., R. J. Bialik, M. Karpiński & Ł. Przyborowski, 2019. Two simultaneously occurring Potamogeton species: similarities and differences in seasonal changes of biomechanical properties. Polish Journal of Environmental Studies 28: 1–16.Google Scholar
  36. Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20: 223–228.PubMedGoogle Scholar
  37. Lockwood, J. L., P. Cassey & T. M. Blackburn, 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910.Google Scholar
  38. Miler, O., I. Albayrak, V. Nikora & M. O’Hare, 2012. Biomechanical properties of aquatic plants and their effects on plant–flow interactions in streams and rivers. Aquatic Sciences 74: 31–44.Google Scholar
  39. Miler, O., I. Albayrak, V. Nikora & M. O’Hare, 2014. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquatic Sciences 76: 465–481.Google Scholar
  40. Okada, M., B. J. Grewell & M. Jasieniuk, 2009. Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquatic Botany 91: 123–129.Google Scholar
  41. Orchard, A., 1981. A revision of South American Myriophyllum (Haloragaceae) and its repercussions on some Australian and North American species. Brunonia 4: 27–65.Google Scholar
  42. Owens, C. S., J. D. Madsen, R. M. Smart & R. M. Steward, 2001. Dispersal of native and nonnative aquatic plant species in the San Marcos River, Texas. Journal of Aquatic Plant Management 39: 75–79.Google Scholar
  43. Pedersen, O., T. D. Colmer & K. Sand-Jensen, 2013. Underwater photosynthesis of submerged plants – recent advances and methods. Frontiers in Plant Science 4: 1–19.Google Scholar
  44. Pollen-Bankhead, N., R. E. Thomas, A. M. Gurnell, T. Liffen, A. Simon & M. T. O’Hare, 2011. Quantifying the potential for flow to remove the emergent aquatic macrophyte Sparganium erectum from the margins of low-energy rivers. Ecological Engineering 37: 1779–1788.Google Scholar
  45. Puijalon, S., J.-P. Léna, N. Rivière, J.-Y. Champagne, J.-C. Rostan & G. Bornette, 2008. Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of four aquatic plant species. New Phytologist 177: 907–917.PubMedGoogle Scholar
  46. Redekop, P., D. Hofstra & A. Hussner, 2016. Elodea canadensis shows a higher dispersal capacity via fragmentation than Egeria densa and Lagarosiphon major. Aquatic Botany 130: 45–49.Google Scholar
  47. Riede, W., 1920. Untersuchungen über Wasserpflanzen. Flora 114: 1–118.Google Scholar
  48. Riis, T., 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.Google Scholar
  49. Riis, T. & B. J. F. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48: 1488–1497.Google Scholar
  50. Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51: 274–286.Google Scholar
  51. Riis, T., T. V. Madsen & R. S. H. Sennels, 2009. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquatic Botany 90: 209–212.Google Scholar
  52. Riis, T., C. Lambertini, B. Olesen, J. S. Clayton, H. Brix & B. K. Sorrell, 2010. Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation? Annals of Botany 106: 813–822.PubMedPubMedCentralGoogle Scholar
  53. Riis, T., B. Olesen, J. S. Clayton, C. Lambertini, H. Brix & B. K. Sorrell, 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany 102: 56–64.Google Scholar
  54. Rothlisberger, J. D., W. L. Chadderton, J. McNulty & D. M. Lodge, 2010. Aquatic invasive species transport via trailered boats: what is being moved, who is moving it, and what can be done. Fisheries 35: 121–132.Google Scholar
  55. Sand-Jensen, K., 2003. Drag and reconfiguration of freshwater macrophytes. Freshwater Biology 48: 271–283.Google Scholar
  56. Sand-Jensen, K., 2008. Drag forces on common plant species in temperate streams: consequences of morphology, velocity and biomass. Hydrobiologia 610: 307–319.Google Scholar
  57. Sand-Jensen, K. & C. L. Møller, 2014. Reduced root anchorage of freshwater plants in sandy sediments enriched with fine organic matter. Freshwater Biology 59: 427–437.Google Scholar
  58. Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.Google Scholar
  59. Sarneel, J. M., 2013. The dispersal capacity of vegetative propagules of riparian fen species. Hydrobiologia 710: 219–225.Google Scholar
  60. Sastroutomo, S. S., 1981. Turion formation, dormancy and germination of curly pondweed, Potamogeton crispus L. Aquatic Botany 10: 161–173.Google Scholar
  61. Schutten, J., J. Dainty & A. J. Davy, 2005. Root anchorage and its significance for submerged plants in shallow lakes. Journal of Ecology 93: 556–571.Google Scholar
  62. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Arnold, London.Google Scholar
  63. Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.Google Scholar
  64. Smart, R. M. & J. W. Barko, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany 21: 251–263.Google Scholar
  65. Thouvenot, L., J. Haury & G. Thiébaut, 2013. A success story: water primroses, aquatic plant pests. Aquatic Conservation: Marine and Freshwater Ecosystems 803: 790–803.Google Scholar
  66. Titus, J. E. & D. T. Hoover, 1991. Toward predicting reproductive success in submerged freshwater angiosperms. Aquatic Botany 41: 111–136.Google Scholar
  67. Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.Google Scholar
  68. Van Wijk, R. J., 1989. Ecological studies on Potamogeton pectinatus L. III. Reproductive strategies and germination ecology. Aquatic Botany 33: 271–299.Google Scholar
  69. Vári, Á., 2013. Colonisation by fragments in six common aquatic macrophyte species. Fundamental and Applied Limnology 183: 15–26.Google Scholar
  70. Wang, M.-Z., Z.-Y. Liu, F.-L. Luo, G.-C. Lei & H.-L. Li, 2016. Do amplitudes of water level fluctuations affect the growth and community structure of submerged macrophytes? PLoS ONE 11: e0146528.PubMedPubMedCentralGoogle Scholar
  71. Wang, Y.-J., H. Müller-Schärer, M. van Kleunen, A.-M. Cai, P. Zhang, R. Yan, B.-C. Dong & F.-H. Yu, 2017. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist 216: 1072–1078.PubMedGoogle Scholar
  72. Xie, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655: 37–47.Google Scholar
  73. Xie, D., Y. Hu, R. P. Mormul, H. Ruan, Y. Feng & M. Zhang, 2018. Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum. Hydrobiologia 815: 205–213.Google Scholar
  74. You, W., D. Yu, C. Liu, D. Xie & W. Xiong, 2013. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718: 27–39.Google Scholar
  75. Yu, H., N. Shen, D. Yu & C. Liu, 2019. Clonal integration increases growth performance and expansion of Eichhornia crassipes in littoral zones: a simulation study. Environmental and Experimental Botany 159: 13–22.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Photosynthesis and Stress Physiology of PlantsHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.General Ecology, Institute for ZoologyUniversity of CologneCologneGermany
  3. 3.Department of Landscape and Vegetation Ecology, Faculty of Architecture, Urban Planning and Landscape Architecture (ASL)University of KasselKasselGermany
  4. 4.Förderverein Feldberg-Uckermärkische-Seenlandschaft e.V.TemplinGermany

Personalised recommendations