Phytoplankton diversity recovers slowly and cyanobacterial abundance remains high after the reflooding of drained marshes

  • Fuad AmeenEmail author
  • Sama AlMaarofi
  • Adel Talib
  • Abobakr Almansob
  • Ali A. Al-Homaidan
Primary Research Paper


Wetland restoration with the goal of restoring natural ecosystem functioning is receiving attention worldwide. Mesopotamian marshes, which had been suffering from a water shortage since the 1970s, were reflooded in 2003, and have been assessed to be at least partly recovered from certain physical, chemical, or biological point of views. Our focus was in the phytoplankton community and through that in the aquatic food web in order to understand the recovery of the normal functioning of the marsh ecosystem. We sampled eight separate marshes that formed a continuum from a wet to a desertified area during the desiccation period. Three to five years after the reflooding, we measured the biomass, diversity and structure of the phytoplankton community and its controlling physical and chemical factors 11 times irregularly. In most cases, the dried and reflooded marshes had a less diverse phytoplankton community than the marsh that had never dried up. The community structure of the latter differed from all dried marshes and was the most divergent from the marshes that had been succumbed to desertification and were situated farthest away from the freshwater rivers. We conclude that the aquatic food web and thus the natural wetland ecosystem functioning recover more slowly than single physical or chemical factors. Cyanobacteria species abundance may be of concern from a management point of view for a long period of time.


Restoration Wetland Aquatic food web Ecosystem functioning Diversity Cyanobacteria 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group NO (RGP-1438-029).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Al-Hilli, M. R. A., B. G. Warner, T. Asada & A. Douabul, 2009. An assessment of vegetation and environmental controls in the 1970s of the Mesopotamian wetlands of southern Iraq. Wetlands Ecology and Management 17: 207.CrossRefGoogle Scholar
  2. Al-Saboonchi, A., A.-R. M. Mohamed, A. H. M. J. Alobaidy, H. S. Abid & B. K. Maulood, 2011. On the current and restoration conditions of the southern Iraqi marshes: application of the CCME WQI on East Hammar marsh. Journal of Environmental Protection 2: 316.CrossRefGoogle Scholar
  3. AlMaarofi, S. S., A. A. Z. Douabul, B. G. Warner & W. D. Taylor, 2014. Phosphorus and nitrogen budgets of the Al-Hawizeh marshland after re-flooding. Hydrobiologia 721: 155–164.CrossRefGoogle Scholar
  4. Avigliano, L., A. Vinocour, G. Chaparro, G. Tell & L. Allende, 2014. Influence of re-flooding on phytoplankton assemblages in a temperate wetland following prolonged drought. Journal of Limnology 73: 247–262.CrossRefGoogle Scholar
  5. Bortolotti, L. E., R. D. Vinebrooke & V. L. St Louis, 2016. Prairie wetland communities recover at different rates following hydrological restoration. Freshwater Biology 61: 1874–1890.CrossRefGoogle Scholar
  6. Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman & D. A. Wardle, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.CrossRefGoogle Scholar
  7. Carrasco, N. K. & R. Perissinotto, 2015. Zooplankton community structure during a transition from dry to wet state in a shallow, subtropical estuarine lake. Continental Shelf Research 111: 294–303.CrossRefGoogle Scholar
  8. Chaparro, G., Z. Horváth, I. O’Farrell, R. Ptacnik & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology 63: 380–391.CrossRefGoogle Scholar
  9. Chaparro, G., I. O’Farrell & T. Hein, 2019. Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Science of The Total Environment 667: 338–347.CrossRefGoogle Scholar
  10. Costa, N. B., M. A. Kolman & A. Giani, 2016. Cyanobacteria diversity in alkaline saline lakes in the Brazilian Pantanal wetland: a polyphasic approach. Journal of Plankton Research 38: 1389–1403.Google Scholar
  11. Desikachary, T. V., 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi.Google Scholar
  12. Díaz-García, J. M., E. Pineda, F. López-Barrera & C. E. Moreno, 2017. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodiversity and Conservation 26: 2569–2589.CrossRefGoogle Scholar
  13. Dodson, S. I. & R. A. Lillie, 2001. Zooplankton communities of restored depressional wetlands in Wisconsin, USA. Wetlands 21: 292–300.CrossRefGoogle Scholar
  14. Douabul, A. A. Z., N. A. Al-Mudhafer, A. A. Alhello, H. T. Al-Saad & S. S. Al-Maarofi, 2012. Restoration versus Re-flooding: mesopotamia Marshlands. Hydrology Current Research 3: 140.Google Scholar
  15. Engst, K., A. Baasch, A. Erfmeier, U. Jandt, K. May, R. Schmiede & H. Bruelheide, 2016. Functional community ecology meets restoration ecology: assessing the restoration success of alluvial floodplain meadows with functional traits. Journal of Applied Ecology 53: 751–764.CrossRefGoogle Scholar
  16. Federation, W. E. & A. P. H. Association, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC.Google Scholar
  17. Gobler, C. J., J. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow & D. B. de Waal, 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97.CrossRefGoogle Scholar
  18. Granado, D. C. & R. Henry, 2014. Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river. Hydrobiologia 721: 223–238.CrossRefGoogle Scholar
  19. Guiry, M. D. & G. M. Guiry, 2015. AlgaeBase. 2015. World-wide Electronic Publication, National University of Ireland, Galway.Google Scholar
  20. Hamdan, M. A., T. Asada, F. M. Hassan, B. G. Warner, A. Douabul, M. R. A. Al-Hilli & A. A. Alwan, 2010. Vegetation response to re-flooding in the Mesopotamian Wetlands, Southern Iraq. Wetlands 30: 177–188.CrossRefGoogle Scholar
  21. Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau & S. Naeem, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.CrossRefGoogle Scholar
  22. Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.CrossRefGoogle Scholar
  23. Hustedt, F., 1985. The Pennate Diatoms. Koeltz Scientific Books, Oberreifenberg.Google Scholar
  24. Kon, K., Y. Hoshino, K. Kanou, D. Okazaki, S. Nakayama & H. Kohno, 2012. Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuarine Coastal and Shelf Science 96: 236–244.CrossRefGoogle Scholar
  25. Laegdsgaard, P., 2006. Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review. Wetlands Ecology and Management 14: 379–399.CrossRefGoogle Scholar
  26. Lawrenz, E., E. M. Smith & T. L. Richardson, 2013. Spectral irradiance, phytoplankton community composition and primary productivity in a salt marsh estuary, North Inlet, South Carolina, USA. Estuaries and Coasts 36: 347–364.CrossRefGoogle Scholar
  27. Lengyel, E., J. Padisák, É. Hajnal, B. Szabó, A. Pellinger & C. Stenger-Kovács, 2016. Application of benthic diatoms to assess efficiency of conservation management: a case study on the example of three reconstructed soda pans, Hungary. Hydrobiologia 777: 95–110.CrossRefGoogle Scholar
  28. Mayer, P. M., R. O. Megard & S. M. Galatowitsch, 2004. Plankton respiration and biomass as functional indicators of recovery in restored prairie wetlands. Ecological Indicators 4: 245–253.CrossRefGoogle Scholar
  29. Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.CrossRefGoogle Scholar
  30. Nõges, T., R. Laugaste, P. Nõges & I. Tõnno, 2008. Critical N: P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Vortsjärv, North-East Europe. Hydrobiologia 599: 77–86.CrossRefGoogle Scholar
  31. Nwaishi, F., R. M. Petrone, J. S. Price & R. Andersen, 2015. Towards developing a functional-based approach for constructed peatlands evaluation in the Alberta Oil Sands Region, Canada. Wetlands 35: 211–225.CrossRefGoogle Scholar
  32. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner, 2010. Vegan: community ecology package. R package version 1.17-4. [available on internet at]. Acesso em 23: 2010.
  33. Olmo, C., X. Armengol, M. Antón-Pardo & R. Ortells, 2016. The environmental and zooplankton community changes in restored ponds over 4 years. Journal of Plankton Research 38: 490–501.CrossRefGoogle Scholar
  34. Paerl, H. W., 2017. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. Journal of Plankton Research 39: 763–771.CrossRefGoogle Scholar
  35. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States, Exclusive of Alaska and Hawaii: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae, Vol. 2. Monographs of the Academy of Natural Sciences of Philadelphia, Philadelphia.Google Scholar
  36. Prescott, G. W., 1978. How to Know Freshwater Algae, 3rd ed. Wes. C. Brown Company Publishers, Dubugue.Google Scholar
  37. Ptacnik, R., T. Andersen & T. Tamminen, 2010. Performance of the Redfield ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs P limitations. Ecosystems 13: 1201–1214.CrossRefGoogle Scholar
  38. Richardson, C. J. & N. A. Hussain, 2006. Restoring the Garden of Eden: an ecological assessment of the marshes of Iraq. AIBS Bulletin 56: 477–489.Google Scholar
  39. Richardson, C. J., P. Reiss, N. A. Hussain, A. J. Alwash & D. J. Pool, 2005. The restoration potential of the Mesopotamian marshes of Iraq. Science 307: 1307–1311.CrossRefGoogle Scholar
  40. Rojo, C., M. Alvarez-Cobelas, J. Benavent-Corai, M. M. Barón-Rodríguez & M. A. Rodrigo, 2012. Trade-offs in plankton species richness arising from drought: insights from long-term data of a National Park wetland (central Spain). Biodiversity and Conservation 21: 2453–2476.CrossRefGoogle Scholar
  41. Salman, S. D., M. F. Abbas, A.-H. M. Ghazi, H. K. Ahmed, A. N. Akash, A. A. Z. Douabul, B. G. Warner & T. Asada, 2014. Seasonal changes in zooplankton communities in the re-flooded Mesopotamian wetlands, Iraq. Journal of Freshwater Ecology 29: 397–412.CrossRefGoogle Scholar
  42. Selala, C., A.-M. Botha, L. P. De Klerk, A. R. De Klerk, J. G. Myburgh & P. J. Oberholster, 2014. Using phytoplankton diversity to determine wetland resilience, one year after a vegetable oil spill. Water Air Soil Pollution 225: 2051.CrossRefGoogle Scholar
  43. Semcheski, M. R., T. A. Egerton & H. G. Marshall, 2016. Composition and diversity of intertidal microphytobenthos and phytoplankton in chesapeake bay. Wetlands 36: 483–496.CrossRefGoogle Scholar
  44. Stainton, M., M. J. Capel & F. A. J. Armstrong, 1977. Chemical Analysis of Fresh Water. Freshwater Institute, Shepherdstown.Google Scholar
  45. Stapanian, M. A., J. V. Adams & B. Gara, 2013. Presence of indicator plant species as a predictor of wetland vegetation integrity: a statistical approach. Plant Ecology 214: 291–302.CrossRefGoogle Scholar
  46. Stević, F., M. Mihaljević & D. Špoljarić, 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709: 143–158.CrossRefGoogle Scholar
  47. Strickland, J. D. H. & T. R. Parsons, 1968. Determination of dissolved oxygen. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167: 71–75.Google Scholar
  48. Tahir, M. A., A. K. Risen & N. A. Hussain, 2008. Monthly variations in the physical and chemical properties of the restored southern Iraqi marshes. Marsh Bulletin 3: 81–94.Google Scholar
  49. Team, R. C., 2007. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Austria, Vienna.Google Scholar
  50. Travaini-Lima, F., A. Milstein & L. H. Sipaúba-Tavares, 2016. Seasonal differences in plankton community and removal efficiency of nutrients and organic matter in a subtropical constructed wetland. Wetlands 36: 921–933.CrossRefGoogle Scholar
  51. Uzarski, D. G., V. J. Brady, M. J. Cooper, D. A. Wilcox, D. A. Albert, R. P. Axler, P. Bostwick, T. N. Brown, J. J. H. Ciborowski & N. P. Danz, 2017. Standardized measures of coastal wetland condition: implementation at a Laurentian Great Lakes basin-wide scale. Wetlands 37: 15–32.CrossRefGoogle Scholar
  52. Van den Brink, P. J. & C. J. F. Ter Braak, 1999. Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environmental Toxicology and Chemistry 18: 138–148.CrossRefGoogle Scholar
  53. Waltham, N. J., D. Burrows, C. Wegscheidl, C. Buelow, M. Ronan, N. Connolly, P. Groves, D. Audas, C. Creighton & M. Sheaves, 2019. Lost floodplain wetland environments and efforts to restore connectivity, habitat and water quality settings on the Great Barrier Reef. Frontiers Marine Science Frontiers 6: 71.CrossRefGoogle Scholar
  54. Weisser, W. W., C. Roscher, S. T. Meyer, A. Ebeling, G. Luo, E. Allan, H. Beßler, R. L. Barnard, N. Buchmann & F. Buscot, 2017. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic and Applied Ecology 23: 1–73.CrossRefGoogle Scholar
  55. Wolters, M., A. Garbutt & J. P. Bakker, 2005. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biological Conservation 123: 249–268.CrossRefGoogle Scholar
  56. Wortley, L., J.-M. Hero & M. Howes, 2013. Evaluating ecological restoration success: a review of the literature. Restoration Ecology 21: 537–543.CrossRefGoogle Scholar
  57. Wu, G., H. Li, B. Liang, F. Shi, J. T. Kirby & R. Mieras, 2017. Subgrid modeling of salt marsh hydrodynamics with effects of vegetation and vegetation zonation. Earth Surface Processes and Landforms 42: 1755–1768.CrossRefGoogle Scholar
  58. Xu, S., Y. Wang, C. Guo, Z. Zhang, Y. Shang, Q. Chen & Z.-L. Wang, 2017. Comparison of Microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37: 99–108.CrossRefGoogle Scholar
  59. Zhao, Q., J. Bai, L. Huang, B. Gu, Q. Lu & Z. Gao, 2016. A review of methodologies and success indicators for coastal wetland restoration. Ecological Indicators 60: 442–452.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Botany & Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Marine Biology, College of Marine Science and EnvironmentHodeidah UniversityAl-HodeidahYemen
  3. 3.Department of Biology, Faculty of Sustainability ScienceLakehead UniversityOrilliaCanada
  4. 4.Department of Biology, College of Science for WomenUniversity of Baghdad, Al-Jadiria CampusBaghdadIraq

Personalised recommendations