, Volume 841, Issue 1, pp 191–203 | Cite as

Experimental evaluation of the effect of a light-emitting diode device on Chinook salmon smolt entrainment in a simulated river

  • M. J. Hansen
  • A. E. Steel
  • D. E. Cocherell
  • P. H. Patrick
  • M. Sills
  • S. J. Cooke
  • K. J. Carr
  • M. L. Kavvas
  • N. A. FangueEmail author
Primary Research Paper


The entrainment and impingement of fish into water diversion infrastructure is one of the several factors contributing to their decline. Here, controlled experiments assessed the potential for a behavioral guidance device [a light-emitting diode (LED) light array] strobing at various spectra to reduce the entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into a water diversion pipe. Fish were tested during the day and night, and under control conditions (light off) and red, blue, and white spectra strobing at 2 Hz. Fish entrainment into the diversion pipe was evaluated. Results indicated greater entrainment at night compared to day. All trials at night with the LED light strobing had higher entrainment than the control, with blue and white spectra corresponding to greater entrainment than red spectra. During the day, the white spectra treatment was different from the red treatment, with lower entrainment. LED lights employed to repel migratory juvenile salmon away from water intake structures may be ineffectual but there is potential for the light to be used as an attractant to guide fish towards desirable features such as “safe” areas (bypass channels or fishways).


Behavioral guidance Oncorhynchus tshawytscha Visual ecology Water diversion 



This work was supported by the University of California, Davis Agricultural Experiment Station [Grant # 2098-H], and the Woodland Davis Clean Water Agency [Agreement #A29651]. The authors thank the Fangue Laboratory and J. Amorocho Hydraulics Laboratory members for all their assistance with fish rearing and flume operation. The authors also thank two anonymous reviewers for constructive comments towards improving this manuscript.

Compliance with ethical standards

Conflicts of interest

PHP and MS are principals of ATET-Tech, the manufacturer of the LED device tested here. None of the other authors have a financial stake in ATET-Tech. Although PHP and MS were involved in study design and interpretation, all data were collected by the academic research team.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the University California, Davis.

Supplementary material

10750_2019_4022_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 16 kb)
10750_2019_4022_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 kb)


  1. Barnett-Johnson, R., C. B. Grimes, C. F. Royer & C. J. Donohoe, 2007. Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags. Canadian Journal of Fisheries and Aquatic Sciences 64: 1683–1692.CrossRefGoogle Scholar
  2. Bartolini, T., S. Butail & M. Porfiri, 2015. Temperature influences sociality and activity of freshwater fish. Environmental Biology of Fishes 98: 825–832.CrossRefGoogle Scholar
  3. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  4. Beatty, D. D., 1966. A study of the succession of visual pigments in Pacific salmon (Oncorhynchus). Canadian Journal of Zoology 44: 429–455.CrossRefPubMedGoogle Scholar
  5. Boswell, K. M., M. P. Wilson & J. Cowan Jr., 2008. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. North American Journal of Fisheries Management 28: 799–807.CrossRefGoogle Scholar
  6. Brown, R., 2000. The potential of strobe lighting as a cost effective means for reducing impingement and entrainment. Environmental Science and Policy 3: 405–416.CrossRefGoogle Scholar
  7. CalFish, 2012. California fish passage assessment database. CalFish, California Cooperative Anadromous Fish and Habitat Data Program [available on internet at].
  8. Carlson, T. J., 1994. Use of Sound for Fish Protection at Power Production Facilities: a Historical Perspective of the State of the Art. Battelle Pacific Northwest Laboratories, Portland.Google Scholar
  9. CDFW (California Department of Fish and Wildlife), 1996. Statewide fish screening policy [available on internet at].
  10. CDFG (California Department of Fish and Game), 2007. Timing, composition and abundance of juvenile salmonid emigration in the Sacramento River near Knight’s Landing, October 2001–July 2002 [available on internet at].
  11. CDFW (California Department of Fish and Wildlife), 2014. State and federally listed endangered and threatened animals of California [available on internet at].
  12. CDWR (California Department of Water Resources), 2014. Draft California water plan, update 2013 [available on internet at].
  13. Chapman, E. D., A. R. Hearn, C. J. Michel, A. J. Amman, S. T. Lindley, M. J. Thomas, P. T. Sandstrom, P. T. Singer, M. L. Peterson, R. B. MacFarlane & A. P. Klimley, 2013. Diel movements of out-migrating Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts in the Sacramento/San Joaquin watershed. Environmental Biology of Fishes 96: 273–286.CrossRefGoogle Scholar
  14. Cheng, C. L. & I. Novales-Flamarique, 2004. Opsin expression: new mechanism for modulating colour vision. Nature 428(6980): 279.CrossRefPubMedGoogle Scholar
  15. Coutant, C. C., 1999. Think like a fish! Emphasising the ‘behaviour’ in behavioural guidance systems. Hydrology Review 17: 18–24.Google Scholar
  16. Coutant, C. C. & R. R. Whitney, 2000. Fish behaviour in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129: 351–380.CrossRefGoogle Scholar
  17. Dudgeon, D., A. H. Arthingtom, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassney & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.CrossRefPubMedGoogle Scholar
  18. Elvidge, C. K., M. I. Ford, T. C. Pratt, K. E. Smokorowski, M. Sills, P. H. Patrick & S. J. Cooke, 2018. Behavioural guidance of yellow-stage American eel Anguilla rostrate with a light-emitting diode device. Endangered Species Research 35: 159–168.CrossRefGoogle Scholar
  19. Enders, E. C., M. H. Gessel & J. G. Williams, 2009. Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow. Canadian Journal of Fish & Aquatic Sciences 66: 2109–2117.CrossRefGoogle Scholar
  20. Ercan, A., M. L. Kavvas, K. Carr, Z. Hockett, H. Bandeh, T. D. Mussen, D. E. Cocherell, J. B. Poletto, J. J. Cech Jr. & N. A. Fangue, 2017. Hydraulics near unscreened diversion pipes in open channels: large flume experiments. JAWRA Journal of the American Water Resources Association 53: 431–441.CrossRefGoogle Scholar
  21. Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecological and Evolutionary Systems 34: 487–515.CrossRefGoogle Scholar
  22. Ford, M. I., C. K. Elvidge, D. Baker, T. C. Pratt, K. E. Smokorowski, P. Patrick, M. Sills & S. J. Cooke, 2017. Evaluating a light-louver system for behavioural guidance of age-0 white sturgeon. River Research & Applications 33: 1286–1294.CrossRefGoogle Scholar
  23. Ford, M. I., C. K. Elvidge, D. Baker, T. C. Pratt, K. E. Smokorowski, P. Patrick, M. Sills & S. J. Cooke, 2018. Preferences of age-0 white sturgeon for different colours and strobe rates of LED lights may inform behavioural guidance strategies. Environmental Biology of Fishes 101: 667–674.CrossRefGoogle Scholar
  24. Fox, J. & S. Weisberg, 2011. An {R} Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks CA.Google Scholar
  25. Furuse, M., 1999. Spectral response properties of S-potentials in the retina of the ayu, Plecoglossus altivelis. Nippon Suisan Gakkaishi 65: 903–904.CrossRefGoogle Scholar
  26. Gale, S. B., A. V. Zale & C. G. Clancy, 2008. Effectiveness of fish screens to prevent entrainment of Westslope Cutthroat Trout into irrigation canals. North American Journal of Fisheries Management 28: 1541–1553.CrossRefGoogle Scholar
  27. Hanak, E., J. Lund, A. Dinar, B. Gray, R. Howitt, J. Mount, P. Moyle, & B. Thompson, 2011. Managing California’s water: from conflict to reconciliation [online]. A report by the Public Policy Institute of California. [available on internet at].
  28. Hansen, M. J., D. E. Cocherell, S. J. Cooke, P. H. Patrick, M. Sills & N. A. Fangue, 2018. Behavioural guidance of Chinook salmon smolts: the variable effects of LED spectral wavelength and strobing frequency. Conservation Physiology 6: coy032.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hanson, H., 2001. Are juvenile Chinook salmon entrained at unscreened diversions in direct proportion to the volume of water diverted. Contributions to the Biology of Central Valley Salmonids 2: 331–342.Google Scholar
  30. Herren, J. A. & S. S. Kawasaki, 2001. Inventory of water diversions in four geographic areas in California’s Central Valley. Fish Bulletin 179: 343–355.Google Scholar
  31. Hino, S., 1979. Avoidance reaction to the light stimulation in ayu, Plecoglossus altivelis. Jogyouhoukokusyo 4: 42–45.Google Scholar
  32. Hothorn, T., F. Bretz & P. Westfall, 2016. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria.Google Scholar
  33. Ingram, J. F. & R. M. Wilder, 2006. Seasonal variation in diel activity patterns of Chinook Salmon in the Sacramento-San Joaquin River delta. Poster presented at Interagency Ecological Program 2006 Annual Workshop, Pacific Grove, California [available on internet at].
  34. Johnson, P. N., K. Bouchard & F. A. Goetz, 2005. Effectiveness of strobe lights for reducing juvenile salmonid entrainment into a navigation lock. North American Journal of Fisheries Management 25: 491–501.CrossRefGoogle Scholar
  35. Kemp, P. S., M. H. Gessel & J. G. Williams, 2005. Fine-scale behavioral responses of Pacific salmonid smolts as they encounter divergence and acceleration of flow. Transactions of the American Fisheries Society 134: 390–398.CrossRefGoogle Scholar
  36. Kimmerer, W. J., 2008. Losses of Sacramento River Chinook salmon and delta smelt to entrainment in water diversions in the Sacramento-San Joaquin delta. San Francisco Estuary and Watershed Science 6: 2.Google Scholar
  37. Knudsen, F. R., C. B. Schreck, S. M. Knapp, P. S. Enger & O. Sand, 1997. Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. Journal of Fish Biology 51: 824–829.CrossRefGoogle Scholar
  38. Kock, T. J., S. D. Evans, T. L. Liedtke, D. W. Rondorf & M. Kohn, 2009. Evaluation of strobe lights to reduce turbine entrainment of juvenile steelhead (Oncorhynchus mykiss) at Cowlitz Falls Dam, Washington. Northwest Science 83: 308–314.CrossRefGoogle Scholar
  39. Levine, J. S. & E. F. MacNichol, 1979. Visual pigments in teleost fishes: effect of habitat, microhabitat, and behaviour on visual system evolution. Sensory Processes 2: 95–131.Google Scholar
  40. Levine, J. S. & E. F. MacNichol, 1982. Colour vision in fishes. Scientific American 246: 140–149.CrossRefGoogle Scholar
  41. Lloyd, D. S., J. P. Koenings & J. D. LaPerriere, 1987. Effects of turbidity in fresh waters of Alaska. North American Journal of Fisheries Management 7: 18–33.CrossRefGoogle Scholar
  42. Lythgoe, J. N., 1979. Ecology of Vision. Clarendon Press, Oxford.Google Scholar
  43. Lythgoe, J. N., 1980. Vision in fish: ecological adaptations. In Ali, M. A. (ed), Environmental Physiology of Fishes. Plenum Press, New York: 431–446.CrossRefGoogle Scholar
  44. Moyle, P. B., J. V. Katz & R. M. Quinones, 2011. Rapid decline of California’s native inland fishes: a status assessment. Biological Conservation 144: 2414–2423.CrossRefGoogle Scholar
  45. Mueller, R. P., D. A. Neitzel & B. G. Amidan, 2001. Evaluation of infra-sound and strobe lights for eliciting avoidance behaviour in juvenile salmon and char. In Coutant, C.C. (ed), Behavioural Technologies for Fish Guidance. American Fisheries Society, Symposium 26, Bethesda, Maryland: 79–89.Google Scholar
  46. Munz, F. W. & W. N. McFarland, 1977. Evolutionary adaptation of fishes to the photic environment. In Crescitelli, F. (ed), The Visual System in Vertebrates. Springer, Berlon: 193–274.CrossRefGoogle Scholar
  47. Mussen, T. D., D. E. Cocherell, Z. Hockett, A. Ercan, H. Bandeh, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2013. Assessing juvenile Chinook Salmon behavior and entrainment risk near unscreened water diversions: large flume simulations. Transactions of the American Fisheries Society 142: 130–142.CrossRefGoogle Scholar
  48. Mussen, T. D., D. Cocherell, J. B. Poletto, J. S. Reardon, Z. Hockett, A. Ercan, H. Bandeh, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2014a. Unscreened water diversion pipes pose an entrainment risk to the threatened Green Sturgeon, Acipenser medirostris. PLoSONE 9: e86321.CrossRefGoogle Scholar
  49. Mussen, T. D., O. Patton, D. Cocherell, A. Ercan, H. Bandeh, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2014b. Can behavioral fish-guidance devices protect juvenile Chinook Salmon (Oncorhynchus tshawytscha) from entrainment into unscreened water diversion pipes? Canadian Journal of Fisheries and Aquatic Sciences 71: 1209–1219.CrossRefGoogle Scholar
  50. Mussen, T. D., D. E. Cocherell, O. Patton, D. Jauregui, A. Ercan, H. Bandeh, D. Meier, S. Thomas, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2015. Modified water diversion structures can behaviorally deter juvenile Chinook salmon from entrainment. Transactions of the American Fisheries Society 144: 1070–1080.CrossRefGoogle Scholar
  51. Nakano, N., R. Kawabe, N. Yamashita, T. Hiraishi, K. Yamamoto & K. Nashimoto, 2006. Colour vision, spectral sensitivity, accommodation, and visual acuity in juvenile masu salmon Oncorhynchus masou. Fisheries Science 72: 239–249.CrossRefGoogle Scholar
  52. Nemeth, R. S. & J. J. Andersen, 1992. Response of juvenile Coho and Chinook salmon to strobe and mercury vapour lights. North American Journal of Fisheries Management 12: 684–692.CrossRefGoogle Scholar
  53. Newcombe, C. P. & D. D. MacDonald, 1991. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management 11: 72–82.CrossRefGoogle Scholar
  54. Niwa, H. & T. Tamura, 1969. Investigation of fish vision by means of S-potential. II. Spectral sensitivity and colour vision. Revue canadienne de biologie/editee par l’Universite de Montreal 28: 79–88.Google Scholar
  55. Noatch, M. R. & C. D. Suski, 2012. Non-physical barriers to deter fish movements. Environmental Reviews 20: 71–82.CrossRefGoogle Scholar
  56. Nobriga, M. L., Z. Matica & Z. P. Hyamanson, 2004. Evaluating entrainment vulnerability to agricultural irrigation diversions: a comparison among openwater fishes. In Feyrer, F., L. R. Brown, R. L. Brown & J. J. Orsi (eds), Early Life History of Fishes in the San Francisco Estuary and Watershed. American Fisheries Society, Symposium 39, Bethesda, Maryland: 281–295.Google Scholar
  57. Novales-Flamarique, I., 2005. Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. Journal of Comparative Physiology A 191: 37–49.CrossRefGoogle Scholar
  58. Novales-Flamarique, I. & C. W. Hawryshyn, 1993. Spectral characteristics of salmonid migratory routes from southern Vancouver Island (British Columbia). Canadian Journal of Fisheries and Aquacultural Sciences 50: 1706–1716.CrossRefGoogle Scholar
  59. Novales-Flamarique, I. & C. W. Hawryshyn, 1994. Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. Journal of Experimental Biology 186: 187–198.PubMedGoogle Scholar
  60. Novales-Flamarique, I. & C. W. Hawryshyn, 1997. Is the use of underwater polarized light by fish restricted to crepuscular time periods? Vision Research 37: 975–989.CrossRefPubMedGoogle Scholar
  61. Novales-Flamarique, I., S. Hiebert & J. Sechrist, 2006. Visual performance and ocular system structure of Kokanee and Sockeye salmon following strobe light exposure. North American Journal of Fisheries Management 26: 453–459.CrossRefGoogle Scholar
  62. Parker, D. C. & C. W. Hawryshyn, 2000. Spectral and ultraviolet-polarisation sensitivity in juvenile salmonids: a comparative analysis using electrophysiology. The Journal of Experimental Biology 203: 1173–1191.Google Scholar
  63. Patrick, P. H., A. E. Christie, D. Sager, C. Hocutt & J. Stauffer Jr., 1985. Responses of fish to a strobe light/air-bubble barrier. Fisheries Research 3: 157–172.CrossRefGoogle Scholar
  64. Peck, L. S., M. S. Clark, S. A. Morley, A. Massey & H. Rossetti, 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecology 2: 248–256.CrossRefGoogle Scholar
  65. Poletto, J. B., D. E. Cocherell, T. D. Mussen, A. Ercan, H. Bandeh, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2014. Efficacy of a sensory deterrent and pipe modifications in decreasing entrainment of juvenile green sturgeon (Acipenser medirostris) at unscreened water diversions. Conservation Physiology 2(cou056): 2015.Google Scholar
  66. Poletto, J. B., D. E. Cocherell, T. D. Mussen, A. Ercan, H. Bandeh, M. L. Kavvas, J. J. Cech Jr. & N. A. Fangue, 2015. Fish-protection devices at unscreened water diversions can reduce entrainment: evidence from behavioural laboratory investigations. Conservation Physiology 3: cov040.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Poletto, J. B., D. E. Cocherell, S. E. Baird, T. X. Nguyen, V. Cabrera-Stagno, A. P. Farrell & N. A. Fangue, 2017. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha. Conservation Physiology 5: cow067.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Popper, A. N. & T. J. Carlson, 1998. Application of sound and other stimuli to control fish behaviour. Transactions of the American Fisheries Society 127: 673–707.CrossRefGoogle Scholar
  69. Portz, D. E., 2007. Fish-holding-associated stress in Sacramento River Chinook Salmon (Oncorhynchus tshawytscha) at south delta fish salvage operations: effects on plasma constituents, swimming performance, and predator avoidance. Doctoral dissertation. University of California, Davis.Google Scholar
  70. R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [available on internet at].
  71. Richards, N. S., S. R. Chips & M. L. Brown, 2007. Stress response and avoidance behaviour of fishes as influenced by high frequency strobe lights. North American Journal of Fisheries Management 27: 1310–1315.CrossRefGoogle Scholar
  72. SacPAS: Central Valley Prediction & Assessment of Salmon. UW Columbia Basin Research. [available on internet at].
  73. Sager, D. R., C. H. Hocutt & J. R. Stauffer Jr, 2000. Avoidance behaviour of Morone americana, Leiostomus xanthurus and Brevoortia tyrannus to strobe light as a method of impingement mitigation. Environmental Science & Policy 3: 393–403.CrossRefGoogle Scholar
  74. Simmons, M. A., R. L. Johnstone, C. A. McKinstry, C. S. Simmons, C. B. Cook, R. S. Brown, D. K. Tano, S. L. Thorsten, D. M. Faber, R. Lecaire & S. Francis, 2004. Strobe light deterrent efficacy test and fish behaviour determination at Grand Coulee Dam Third Powerplant Forebay. Pacific Northwest National Laboratory PNNL-14512. Department of Energy USA.Google Scholar
  75. Swanson, C., P. S. Young & J. J. Cech Jr., 2004. Swimming in two-vector flows: performance and behavior of juvenile Chinook salmon near a simulated screened water diversion. Transactions of the American Fisheries Society 133: 265–278.CrossRefGoogle Scholar
  76. Terazono, K., 1998. The use of light to guidance system of masu salmon in dam pool (part 1). Dam Engineering 129: 50–58.Google Scholar
  77. Tsin, A. T. C. & D. D. Beatty, 1977. Visual pigment changes in rainbow trout in response to temperature. Science 195: 1358–1360.CrossRefPubMedGoogle Scholar
  78. Utne Palm, A. C., 2002. Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine and Freshwater Behaviour and Physiology 32: 111–128.CrossRefGoogle Scholar
  79. Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.CrossRefGoogle Scholar
  80. Walters, A. W., D. M. Holzer, J. R. Faulkner, C. D. Warren, P. D. Murphy & M. M. McClure, 2012. Quantifying cumulative entrainment effects for chinook salmon in a heavily irrigated watershed. Transactions of the American Fisheries Society 141: 1180–1190.CrossRefGoogle Scholar
  81. Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Wildlife, Fish and Conservation BiologyUniversity of California, DavisDavisUSA
  2. 2.Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary ScienceCarleton UniversityOttawaCanada
  3. 3.ATET-TECH, Inc.ThornhillCanada
  4. 4.Department of the Biology and Ecology of FishesLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  5. 5.J. Amorocho Hydraulics Laboratory, Department of Civil and Environmental EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations