Advertisement

Hydrobiologia

, Volume 839, Issue 1, pp 51–69 | Cite as

Wave exposure as a driver of isolation by environment in the marine gastropod Nucella lapillus

  • Belén Carro
  • María QuintelaEmail author
  • José Miguel Ruiz
  • Rodolfo Barreiro
Primary Research Paper

Abstract

The way adaptive and neutral genetic variation is shaped by environmental factors is crucial for evolutionary biology. To investigate whether wave exposure can enhance local adaptation on littoral snails, AFLP markers were scanned across ten populations of Nucella lapillus from contrasting habitats (protected vs. exposed). As some 6% of the analysed loci deviated from neutral expectations, it was suggested that wave exposure could be a strong selective agent shaping genetic variation. Neutral markers described a pattern of “Isolation by distance (IBD) only” with no signature of Isolation by environment (IBE), whereas loci under divergent selection followed a pattern of “IBD and IBE”, as Partial Mantel tests detected a significant IBD after accounting for environmental differences. The topology of genetic networks revealed a substantial gene flow at neutral markers (i.e. dense net with edges connecting similar and contrasting habitats), whereas few connections were established between contrasting environments at loci under divergent selection. Furthermore, loci correlated to phenotype (shell shape; i.e. a morphological biomarker of wave exposure) explained up to ca 11% of the variance of this trait. Altogether, our results suggest that, even in a context of gene flow, local adaptation could outline a feature such as shell shape.

Keywords

Isolation by distance Isolation by environment Wave exposure Marine snails Shell shape Genotype–phenotype correlations 

Notes

Acknowledgements

We thank Carlos Caramelo for his help during field work, Javier Cremades for assisting us to determine wave exposure, and François Besnier and José Álvarez-Castro for their help with NOIA analyses. We are also grateful to Alex Richter-Boix and Gernot Segelbacher for their insightful comments on an early version of this manuscript. Financial support for this work was provided by the Ministerio de Educación y Ciencia of Spain, Grant CTM2004-04496/MAR (partially co-founded by FEDER, Fondo Europeo de Desarrollo Regional); and Xunta de Galicia, Grant PGIDT05PXIC10302PN. BC acknowledges fellowships from Universidade da Coruña and Deputación da Coruña.

Supplementary material

10750_2019_3993_MOESM1_ESM.docx (65 kb)
Supplementary material 1 (DOCX 65 kb)

References

  1. Albert, F. W., Ö. Carlborg, I. Plyusnina, F. Besnier, D. Hedwig, S. Lautenschläger, D. Lorenz, J. McIntosh, C. Neumann, H. Richter, C. Zeising, R. Kozhemyakina, O. Shchepina, J. Kratzsch, L. Trut, D. Teupser, J. Thiery, T. Schöneberg, L. Andersson & S. Pääbo, 2009. Genetic architecture of tameness in a rat model of animal domestication. Genetics 182(2): 541–554.Google Scholar
  2. Álvarez-Castro, J. M. & Ö. Carlborg, 2007. A unified model for functional and statistical epistasis and its application in Quantitative Trait Loci analysis. Genetics 176(2): 1151–1167.Google Scholar
  3. Álvarez-Castro, J. M., A. Le Rouzic & Ö. Carlborg, 2008. How to perform meaningful estimates of genetic effects. PLoS Genet 4(5): e1000062.Google Scholar
  4. Antao, T. & A. Lopes, 2011. Mcheza: a selection detection workbench for dominant markers. Bioinformatics 27(12): 1717–1718.Google Scholar
  5. Ballantine, W. J., 1961. A biologically-defined exposure scale for the comparative description of rocky shores. Field Studies 1(3): 1–19.Google Scholar
  6. Bantock, C. R. & W. C. Cockaine, 1975. Chromosomal polymorphism in Nucella lapillus. Heredity 34: 231–245.Google Scholar
  7. Barreiro, R., L. Couceiro, M. Quintela & J. M. Ruiz, 2006. Population genetic structure of the prosobranch Nassarius reticulatus (L.) in a ria seascape (NW Iberian Peninsula) as revealed by RAPD analysis. Marine Biology 148(5): 1051–1060.Google Scholar
  8. Beaumont, M. A. & D. J. Balding, 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology 13(4): 969–980.Google Scholar
  9. Beaumont, M. & R. Nichols, 1996. Evaluating loci for use in the genetic analysis of population structure. Biological Sciences 263(1377): 1619–1626.Google Scholar
  10. Berry, R. J. & J. H. Crothers, 1968. Stabilizing selection in the dog-whelk (Nucella lapillus). Journal of Zoology, London 155: 5–17.Google Scholar
  11. Berry, R. J. & J. H. Crothers, 1974. Visible variation in the dog-whelk, Nucella lapillus. Journal of Zoology, London 174: 123–148.Google Scholar
  12. Besnier, F., A. Rouzic & J. M. Álvarez-Castro, 2010. Applying QTL analysis to conservation genetics. Conservation Genetics 11(2): 399–408.Google Scholar
  13. Blignaut, M., A. G. Ellis & J. J. Le Roux, 2013. Towards a transferable and cost-effective plant AFLP protocol. PLoS ONE 8(4): e61704.Google Scholar
  14. Bohonak, A. J., 1999. Dispersal, gene flow, and population structure. Quarterly Review of Biology 74(1): 21–45.Google Scholar
  15. Bonin, A., E. Belleiman, P. Bronken Eidesen, F. Pompanon, C. Brochmann & P. Taberlet, 2004. How to track and assess genotyping errors in population genetics studies. Molecular Ecology 13(11): 3261–3273.Google Scholar
  16. Bonin, A., P. Taberlet, C. Miaud & F. Pompanon, 2006. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Molecular Biology and Evolution 23(4): 773–783.Google Scholar
  17. Boulding, E. G., 1990. Are the opposing selection pressures on exposed and protected shores sufficient to maintain genetic differentiation between gastropod populations with high intermigration rates? Hydrobiologia 193: 41–52.Google Scholar
  18. Bourret, V., M. P. Kent, C. R. Primmer, A. Vasemägi, S. Karlsson, K. Hindar, P. McGinnity, E. Verspoor, L. Bernatchez & S. Lien, 2013. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Molecular Ecology 22(3): 532–551.Google Scholar
  19. Brönmark, C., T. Lakowitz & J. Hollander, 2011. Predator-induced morphological plasticity across local populations of a fresh water snail. PLoS ONE 6(7): e21773.Google Scholar
  20. Butlin, R. K., J. Galindo & J. W. Grahame, 2008. Sympatric, parapatric or allopatric: the most important way to classify speciation? Philosophical Transactions of the Royal Society B 363(1506): 2997–3007.Google Scholar
  21. Butlin, R. K., M. Saura, G. Charrier, B. Jackson, C. André, A. Caballero, J. A. Coyne, J. Galindo, J. W. Grahame, J. Hollander, P. Kemppainen, M. Martínez-Fernández, M. Panova, H. Quesada, K. Johannesson & E. Rolán-Alvarez, 2014. Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68(4): 935–949.Google Scholar
  22. Caballero, A., H. Quesada & E. Rolán-Álvarez, 2008. Impact of AFLP fragment size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics 179(1): 539–554.Google Scholar
  23. Carvajal-Rodríguez, A., E. Rolán-Álvarez & A. Caballero, 2005. Quantitative variation as a tool for detecting human-induced impacts on genetic diversity. Biological Conservation 124(1): 1–13.Google Scholar
  24. Castle, S. L. & A. E. H. Emery, 1981. Nucella lapillus: a possible model for the study of genetic variation in natural populations. Genetica 56: 11–15.Google Scholar
  25. Chan, Y. F., M. E. Marks, F. C. Jones, G. Villarreal, M. D. Shapiro, S. D. Brady, A. M. Southwick, D. M. Absher, J. Grimwood, J. Schmutz, R. M. Myers, D. Petrov, B. Jãnsson, D. Schluter, M. A. Bell & D. M. Kingsley, 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963): 302–305.Google Scholar
  26. Chen, F., X. Luo, D. Wang & C. Ke, 2010. Population structure of the spotted babylon, Babylonia areolata in three wild populations along the Chinese coastline revealed using AFLP fingerprinting. Biochemical Systematics and Ecology 38(6): 1103–1110.Google Scholar
  27. Chrismas, N. A. M., B. Torres-Fabila, C. S. Wilding & J. W. Grahame, 2014. An association of mitochondrial haplotype with shell shape in the intertidal gastropod Littorina saxatilis. Journal of Molluscan Studies 80(2): 184–189.Google Scholar
  28. Colson, I., J. Guerra-Varela, R. N. Hughes & E. Rolán-Álvarez, 2006. Using molecular and quantitative variation for assessing genetic impacts on Nucella lapillus populations after local extinction and recolonization. Integrative Zoology 2: 104–107.Google Scholar
  29. Colton, H. S., 1922. Variation in the dogwhelk Thais (Purpura auct.) lapillus. Ecology 3(2): 146–157.Google Scholar
  30. Conde-Padín, P., A. Carvajal-Rodríguez, M. Carballo, A. Caballero & E. Rolán-Alvarez, 2007. Genetic variation for shell traits in a direct-developing marine snail involved in a putative sympatric ecological speciation process. Evolutionary Ecology 21(5): 635–650.Google Scholar
  31. Conde-Padín, P., R. Cruz, J. Hollander & E. Rolán-Álvarez, 2008. Revealing the mechanisms of sexual isolation in a case of sympatric and parallel ecological divergence. Biological Journal of the Linnean Society 94(3): 513–526.Google Scholar
  32. Conover, D. O., L. M. Clarke, S. B. Munch & G. N. Wagner, 2006. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology 69: 21–47.Google Scholar
  33. Cotton, P. A., D. R. Simon & K. E. Smith, 2004. Trait compensation in marine gastropods: shell shape, avoidance behavior, and susceptibility to predation. Ecology 85(6): 1581–1584.Google Scholar
  34. Coyne, J. A. & H. A. Orr, 1989. Patterns of speciation in Drosophila. Evolution 43(2): 362–381.Google Scholar
  35. Crothers, J. H., 1973. On variation in Nucella lapillus (L.): shell shape in populations from Pembrokeshire, South Wales. Proceedings of the Malacological Society of London 40: 319–327.Google Scholar
  36. Crothers, J. H., 1977. On variation in Nucella lapillus (L.): shell shape in populations towards the southern limit of its European range. Journal of Molluscan Studies 43(2): 181–188.Google Scholar
  37. Crothers, J. H., 1983. Variation in dog-whelk shells in relation to wave action and crab predation. Biological Journal of the Linnean Society 20(1): 85–102.Google Scholar
  38. Crothers, J. H., 1985. Dog-whelks: an introduction to the biology of Nucella lapillus (L.). Field Studies 6: 291–360.Google Scholar
  39. Cuña, V., Quesada Saura & E. Rolán-Álvarez, 2011. Extensive micro-geographical shell polymorphism in a planktotrophic marine intertidal snail. Marine Ecology Progress Series 427: 133–143.Google Scholar
  40. Day, A. J., 1990. Microgeographic variation in allozyme frequencies in relation to the degrees of exposure to wave action in the dogwhelk Nucella lapillus(L.) (Prosobranchia: Muriacea). Biological Journal of the Linnean Society 40: 245–261.Google Scholar
  41. Day, A. J. & B. L. Bayne, 1988. Allozyme variation in populations of the dog-whelk Nucella lapillus (Prosobranchia: Muriacea) from the South West Peninsula of England. Marine Biology 99: 93–100.Google Scholar
  42. Dieckmann, U., J. A. J. Metz, M. Doebeli & D. Tautz, 2004. Adaptive Speciation. Cambridge University Press, Cambridge.Google Scholar
  43. Dyer, R. J., 2009. GeneticStudio: a suite of programs for spatial analysis of genetic-marker data. Molecular Ecology Resources 9(1): 110–113.Google Scholar
  44. Dyer, R. J., 2015. Population graphs and landscape genetics. Annual Review of Ecology, Evolution, and Systematics 46(1): 327–342.Google Scholar
  45. Dyer, R. J. & J. D. Nason, 2004. Population Graphs: the graph theoretic shape of genetic structure. Molecular Ecology 13(7): 1713–1727.Google Scholar
  46. Dyer, R. J., J. D. Nason & R. C. Garrick, 2010. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Molecular Ecology 19(17): 3746–3759.Google Scholar
  47. Eckert, A. J., J. van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J. Ross-Ibarra, S. C. González-Martínez & D. B. Neale, 2010. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185(3): 969–982.Google Scholar
  48. Edelaar, P., A. M. Siepielski & J. Clobert, 2008. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62(10): 2462–2472.Google Scholar
  49. Erlandsson, J., K. Johannesson & E. Rolán-Alvarez, 1998. Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evolutionary Ecology 12(8): 913–924.Google Scholar
  50. Etter, R. J., 1996. The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus(L.). Journal of the Marine Biological Association of the United Kingdom 196: 341–356.Google Scholar
  51. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 21(2): 479–491.Google Scholar
  52. Excoffier, L., T. Hofer & M. Foll, 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103(4): 285–298.Google Scholar
  53. Foll, M. & O. Gaggiotti, 2006. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174(2): 875–891.Google Scholar
  54. Foll, M. & O. Gaggiotti, 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180(2): 977–993.Google Scholar
  55. Foll, M., M. A. Beaumont & O. Gaggiotti, 2008. An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179(2): 927–939.Google Scholar
  56. Fortuna, M. A., R. G. Albaladejo, L. Fernández, A. Aparicio & J. Bascompte, 2009. Networks of spatial genetic variation across species. Proceedings of the National Academy of Sciences of the United States of America 106(45): 19044–19049.Google Scholar
  57. Freedman, A. H., H. A. Thomassen, W. Buermann & T. B. Smith, 2010. Genomic signals of diversification along ecological gradients in a tropical lizard. Molecular Ecology 19: 3773–3788.Google Scholar
  58. Galindo, H. M., D. B. Olson & S. R. Palumbi, 2006. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Current Biology 16(16): 1622–1626.Google Scholar
  59. Galindo, J., P. Morán & E. Rolán-Álvarez, 2009. Comparing geographical genetic differentiation between candidate and noncandidate loci for adaptation strengthens support for parallel ecological divergence in the marine snail Littorina saxatilis. Molecular Ecology 18(5): 919–930.Google Scholar
  60. Galindo, J., M. J. Rivas, M. Saura & E. Rolán-Alvarez, 2014. Selection on hybrids of ecologically divergent ecotypes of a marine snail: the relative importance of exogenous and endogenous barriers. Biological Journal of the Linnean Society 111(2): 391–400.Google Scholar
  61. Galindo, J., D. Cacheda, A. Caballero & E. Rolán-Alvarez, 2019. Untangling the contribution of genetic and environmental effects to shell differentiation across an environmental cline in a marine snail. Journal of Experimental Marine Biology and Ecology 513: 27–34.Google Scholar
  62. Garant, D., S. E. Forde & A. P. Hendry, 2007. The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology 21: 434–443.Google Scholar
  63. García-Ramos, G. & M. Kirkpatrick, 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51(1): 21–28.Google Scholar
  64. Garroway, C. J., J. Bowman, D. Carr & P. J. Wilson, 2008. Applications of graph theory to landscape genetics. Evolutionary Applications 1(4): 620–630.Google Scholar
  65. Giordano, A. R., J. Benjamin & A. Storfer, 2007. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Molecular Ecology 16(8): 1625–1637.Google Scholar
  66. Goudet, J., T. De Meeüs, A. J. Day & C. J. Gliddon, 1994. The different levels of population structuring of the dogwhelk, Nucella lapillus, along the south Devon coast. In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London: 81–95.Google Scholar
  67. Grahame, J. W., C. S. Wilding & R. K. Butlin, 2006. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60(2): 268–278.Google Scholar
  68. Guerra-Varela, J., I. Colson, T. Backeljau, K. Breugelmans, R. N. Hughes & E. Rolán-Álvarez, 2009. The evolutionary mechanism maintaining shell shape and molecular differentiation between two ecotypes of the dogwhelk Nucella lapillus. Evolutionary Ecology 23: 261–280.Google Scholar
  69. Hellberg, M. E., R. S. Burton, J. E. Neigel & S. R. Palumbi, 2002. Genetic assessment of connectivity among marine populations. Bull Mar Sci 70(1): 273–290.Google Scholar
  70. Hendry Andrew, P., 2004. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research 6: 1219–1236.Google Scholar
  71. Hoekstra, E. Hopi, E. Drumm, K. Nachman & W. Michael, 2004. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58(6): 1329–1341.Google Scholar
  72. Hoekstra, H. E., R. J. Hirschmann, R. A. Bundey, P. A. Insel & J. P. Crossland, 2006. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313(5783): 101–104.Google Scholar
  73. Hoffman, J. I., L. S. Peck, G. Hillyard, A. Zieritz & M. S. Clark, 2010. No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Marine Biology 157(4): 765–778.Google Scholar
  74. Hollander, J. & R. Butlin, 2010. The adaptive value of phenotypic plasticity in two ecotypes of a marine gastropod. BMC Evolutionary Biology 10(1): 333.Google Scholar
  75. Johannesson, K., B. Johannesson & E. Rolán-Alvarez, 1993. MMorphological differentiation and genetic cohesiveness over a microenvironmental gradient in the marine snail Littorina saxatilis. Evolution 47(6): 1770–1787.Google Scholar
  76. Johannesson, B. & K. Johannesson, 1996. Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation? Journal of Zoology 240: 475–493.Google Scholar
  77. Johannesson, K., M. Panova, P. Kemppainen, C. André, E. Rolán-Alvarez & R. K. Butlin, 2010. Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1547): 1735–1747.Google Scholar
  78. Johnson, M. S. & R. Black, 1991. Genetic subdivision of the intertidal snail Bembicium vittatum (Gastropoda: Littorinidae) varies with habitat in the Houtman Abrolhos Islands, Western Australia. Heredity 67: 205–213.Google Scholar
  79. Johnson, M. S. & R. Black, 1998. Effects of habitat on growth and shape of contrasting phenotypes of Bembicium vittatum Philippi in the Houtman Abrolhos Islands, Western Australia. Hydrobiologia 378(1–3): 95–103.Google Scholar
  80. Johnson, M. S. & R. Black, 2008. Adaptive responses of independent traits to the same environmental gradient in the intertidal snail Bembicium vittatum. Heredity 101: 83.Google Scholar
  81. Joost, S., A. Bonin, M. W. Bruford, L. Després, C. Conord, G. Erhardt & P. Taberlet, 2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular Ecology 16(18): 3955–3969.Google Scholar
  82. Joost, S., M. Kalbermatten & A. Bonin, 2008. Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Molecular Ecology Resources 8(5): 957–960.Google Scholar
  83. Kane, N. C. & L. H. Rieseberg, 2007. Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower. Helianthus annuus. Genetics 175(4): 1823–1834.Google Scholar
  84. Kavanagh, K., T. Haugen, F. Gregersen, J. Jernvall & L. Vollestad, 2010. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation. BMC Evolutionary Biology 10(1): 350.Google Scholar
  85. Kawecki, T. J. & D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters 7(12): 1225–1241.Google Scholar
  86. Kess, T., J. Galindo & E. G. Boulding, 2018. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Ecology and Evolution 8(16): 8311–8327.Google Scholar
  87. Kingsolver, J. G., D. W. Pfennig & M. R. Servedio, 2002. Migration, local adaptation and the evolution of plasticity. Trends in Ecology & Evolution 17(12): 540–541.Google Scholar
  88. Kirby, R. R., B. L. Bayne & R. J. Berry, 1994. Phenotypic variation along a cline in allozyme and karyotype frequencies, and its relationship with habitat, in the dog-whelk Nucella lapillus, L. Biological Journal of the Linnean Society 53(3): 255–275.Google Scholar
  89. Kitching, J. A., 1977. Shell form and niche occupation in Nucella lapillus (L.) (Gastropoda). Journal of Experimental Marine Biology and Ecology 26: 275–287.Google Scholar
  90. Kitching, J. A., 1985. The ecological significance and control of shell variability in dogwhelks from temperate rocky shores. In Moore, P. G. & R. Seed (eds), The Ecology of Rocky Coasts. Hodder & Stoughton, London: 234–248.Google Scholar
  91. Kitching, J. A., L. Muntz & F. J. Ebling, 1966. The Ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35(1): 113–126.Google Scholar
  92. Koskinen, M. T., P. Sundell, J. Piironen & C. R. Primmer, 2002. Genetic assessment of spatiotemporal evolutionary relationships and stocking effects in grayling (Thymallus thymallus, Salmonidae). Ecology Letters 5(2): 193–205.Google Scholar
  93. Lakowitz, T., C. Brönmark & P. E. R. Nyström, 2008. Tuning in to multiple predators: conflicting demands for shell morphology in a freshwater snail. Freshwater Biology 53(11): 2184–2191.Google Scholar
  94. Lam, P. K. S. & P. Calow, 1988. Differences in the shell shape of Lymnaea peregra (Müller) (Gastropoda: Pulmonata) from lotic and lentic habitats; environmental or genetic variance? Journal of Molluscan Studies 54(2): 197–207.Google Scholar
  95. Le Rouzic, A., J. M. Álvarez-Castro & Ö. Carlborg, 2008. Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 179(3): 1591–1599.Google Scholar
  96. Legendre, P. & M.-J. Fortin, 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10(5): 831–844.Google Scholar
  97. Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends in Ecology & Evolution 17(4): 183–189.Google Scholar
  98. LeRouzic, A. & J. M. Álvarez-Castro, 2008. Estimation of genetic effects and genotype-phenotype maps. Evolutionary Bioinformatics 28(4): 225–235.Google Scholar
  99. LeRouzic, A., A. B. Gjuvsland & O. Ariste, 2015. Package ‘noia’. Implementation of the Natural and Orthogonal InterAction (NOIA) model version 0.97.1. CRAN.Google Scholar
  100. Limborg, M. T., S. J. Helyar, M. De Bruyn, M. I. Taylor, E. E. Nielsen, R. O. B. Ogden, G. R. Carvalho, F. P. T. Consortium & D. Bekkevold, 2012. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Molecular Ecology 21(15): 3686–3703.Google Scholar
  101. Malécot, G. & L. Blaringhem, 1948. Les mathématiques de l’hérédité. Masson et Cie, Paris.Google Scholar
  102. Mantel, N., 1967. The detection of disease of clustering and a generalized regression approach. Cancer Research 27(2): 209–220.Google Scholar
  103. Martínez-Fernández, M., A. M. Rodríguez-Piñeiro, E. Oliveira, M. Páez de la Cadena & E. Rolán-Alvarez, 2008. Proteomic comparison between two marine snail ecotypes reveals details about the biochemistry of adaptation. Journal of Proteome Research 7(11): 4926–4934.Google Scholar
  104. Martínez-Fernández, M., L. Bernatchez, E. Rolán-Álvarez & H. Quesada, 2010. Insights into the role of differential gene expression on the ecological adaptation of the snail Littorina saxatilis. BMC Evolutionary Biology 10: 356.Google Scholar
  105. Mattersdorfer, K., S. Koblmüller & K. M. Sefc, 2012. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Molecular Ecology 21(14): 3531–3544.Google Scholar
  106. McCairns, R. J. S. & L. Bernatchez, 2008. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology 17(17): 3901–3916.Google Scholar
  107. McCracken, K. G., M. Bulgarella, K. P. Johnson, M. K. Kuhner, J. Trucco, T. H. Valqui, R. E. Wilson & J. L. Peters, 2009. Gene flow in the face of countervailing selection: adaptation to high-altitude hypoxia in the βA hemoglobin subunit of yellow-billed pintails in the Andes. Molecular Biology and Evolution 26: 815–827.Google Scholar
  108. Meirmans, P. G., 2012. The trouble with isolation by distance. Molecular Ecology 21(12): 2839–2846.Google Scholar
  109. Meudt, H. M. & A. C. Clarke, 2007. Almost Forgotten or Latest Practice? AFLP applications, analyses and advances. Trends in Plant Science 12(3): 106–117.Google Scholar
  110. Minor, E. S. & D. L. Urban, 2007. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecological Applications 17(6): 1771–1782.Google Scholar
  111. Moore, H. B., 1936. The biology of Purpura lapillus. I. Shell variation in relation to environment. Journal of the Marine Biological Association of the United Kingdom 21: 61–89.Google Scholar
  112. Mullen, L. M., S. N. Vignieri, J. A. Gore & H. E. Hoekstra, 2009. Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proceedings of the Royal Society of London Series B 276: 3809–3818.Google Scholar
  113. Murphy, M. A., R. Dezzani, D. S. Pilliod & A. Storfer, 2010. Landscape genetics of high mountain frog metapopulations. Molecular Ecology 19: 3634–3649.Google Scholar
  114. Nanninga, G. B., P. Saenz-Agudelo, A. Manica & M. L. Berumen, 2014. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Molecular Ecology 23(3): 591–602.Google Scholar
  115. Nosil, P., 2009. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63(7): 1902–1912.Google Scholar
  116. Nosil, P., 2012. Ecological Speciation. Oxford University Press, Oxford.Google Scholar
  117. Nosil, P. & J. L. Feder, 2012. Widespread yet heterogeneous genomic divergence. Molecular Ecology 21(12): 2829–2832.Google Scholar
  118. Nosil, P., S. P. Egan, D. J. Funk & H. Hoekstra, 2007. Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by Adaptation” and multiple roles for divergent selection. Evolution 62(2): 316–336.Google Scholar
  119. Nosil, P., D. J. Funk & D. Ortiz-Barrientos, 2009. Divergent selection and heterogeneous genomic divergence. Molecular Ecology 18: 375–402.Google Scholar
  120. Nunes, V. L., M. A. Beaumont, R. K. Butlin & O. S. Paulo, 2011. Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient. Molecular Ecology 20: 193–205.Google Scholar
  121. Orsini, L., J. Vanoverbeke, I. Swillen, J. Mergeay & L. De Meester, 2013. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22(24): 5983–5999.Google Scholar
  122. Palmer, A. R., 1990. Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus (L.). Hydrobiologia 193: 155–182.Google Scholar
  123. Panova, M., J. Hollander & K. Johannesson, 2006. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Molecular Ecology 15(13): 4021–4031.Google Scholar
  124. Paris, M., S. Boyer, A. Bonin, A. Collado, J. P. David & L. Despres, 2010. Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Molecular Ecology 19(2): 325–337.Google Scholar
  125. Parsons, K. E., 1997. Contrasting patterns of heritable geographic variation in shell morphology and growth potential in the marine gastropod Bembicium vittatum: evidence from field experiments. Evolution 51(3): 784–796.Google Scholar
  126. Pascoal, S., G. Carvalho, S. Creer, S. Mendo & R. Hughes, 2012a. Plastic and heritable variation in shell thickness of the intertidal gastropod Nucella lapillus associated with risks of crab predation and wave action, and sexual maturation. PLoS ONE 7(12): e52134.Google Scholar
  127. Pascoal, S., G. Carvalho, S. Creer, J. Rock, K. Kawaii, S. Mendo & R. Hughes, 2012b. Plastic and heritable components of phenotypic variation in Nucella lapillus: an assessment using reciprocal transplant and common garden experiments. PLoS ONE 7(1): e30289.Google Scholar
  128. Paun, O. & P. Schönswetter, 2012. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods in molecular biology (Clifton, NJ) 862: 75–87.Google Scholar
  129. Peakall, R. & P. E. Smouse, 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources 6(1): 288–295.Google Scholar
  130. Peccoud, J., A. Ollivier, M. Plantegenest & J.-C. Simon, 2009. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences 106(18): 7495–7500.Google Scholar
  131. Pérez-Figueroa, A., M. J. García-Pereira, M. Saura, E. Rolán-Álvarez & A. Caballero, 2010. Comparing three different methods to detect selective loci using dominant markers. Journal of Evolutionary Biology 23(10): 2267–2276.Google Scholar
  132. Pfenninger, M., M. Cordellier & B. Streit, 2006. Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evolutionary Biology 6(1): 100.Google Scholar
  133. Poncet, B. N., D. Herrmann, F. Gugerli, P. Taberlet, R. Holderegger, L. Gielly, D. Rioux, W. Thuiller, S. Aubert & S. Manel, 2010. Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Molecular Ecology 19(14): 2896–2907.Google Scholar
  134. Quesada, H., D. Posada, A. Caballero, P. Morán & E. Rolán-Alvarez, 2007. Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61(7): 1600–1612.Google Scholar
  135. Quintela, M., M. P. Johansson, B. K. Kristjánsson, R. Barreiro & A. Laurila, 2014. AFLPs and mitochondrial haplotypes reveal local adaptation to extreme thermal environments in a freshwater gastropod. PLOS ONE 9(7): e101821.Google Scholar
  136. Richter-Boix, A., M. Quintela, G. Segelbacher & A. Laurila, 2011. Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis. Molecular Ecology 20(8): 1582–1600.Google Scholar
  137. Richter-Boix, A., M. Quintela, M. Kierczak, M. Franch & A. Laurila, 2013. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Molecular Ecology 22(5): 1322–1340.Google Scholar
  138. Riginos, C. & L. Liggins, 2013. Seascape genetics: populations, individuals, and genes marooned and adrift. Geography Compass 7(3): 197–216.Google Scholar
  139. Rolán-Álvarez, E., 2007. Sympatric speciation as a by-product of ecological adaptation in the Galician Littorina saxatilis hybrid zone. Journal of Molluscan Studies 73(1): 1–10.Google Scholar
  140. Rolán-Álvarez, E., C. J. Austin & E. G. Boulding, 2015. The contribution of the genus Littorina to the field of evolutionary Ecology. In Hughes, R. N., D. J. Hughes, I. P. Smith & A. C. Dale (eds), Oceanography and Marine Biology: An Annual Review. Taylor & Francis, London: 157–214.Google Scholar
  141. Rolán, E., J. Guerra-Varela, I. Colson, R. N. Hughes & E. Rolán-Álvarez, 2004. Morphological and genetic analysis of two sympatric morphs of the dogwhelk Nucella lapillus (Gastropoda: Muricidae) from Galicia (Northwestern Spain). Journal of Molluscan Studies 70: 179–185.Google Scholar
  142. Rosenberg, M. S. & C. D. Anderson, 2011. PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods in Ecology and Evolution 2(3): 229–232.Google Scholar
  143. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4): 1219–1228.Google Scholar
  144. Rundle, H. D. & P. Nosil, 2005. Ecological speciation. Ecology Letters 8(3): 336–352.Google Scholar
  145. Räsänen, K. & A. P. Hendry, 2008. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters 11(6): 624–636.Google Scholar
  146. Sanford, E. & M. W. Kelly, 2011. Local adaptation in marine invertebrates. Annual Review of Marine Science 3(1): 509–535.Google Scholar
  147. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.Google Scholar
  148. Schluter, D., 2009. Evidence for ecological speciation and its alternative. Science 323: 737–741.Google Scholar
  149. Schluter, D., A. Clifford Elizabeth, M. Nemethy & S. McKinnon Jeffrey, 2004. Parallel evolution and inheritance of quantitative traits. The American Naturalist 163: 809–822.Google Scholar
  150. Selkoe, K. A., C. M. Henzler & S. D. Gaines, 2008. Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9(4): 363–377.Google Scholar
  151. Sexton, J. P., S. B. Hangartner & A. A. Hoffmann, 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68(1): 1–15.Google Scholar
  152. Shafer, A. B. A. & J. B. W. Wolf, 2013. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecology Letters 16(7): 940–950.Google Scholar
  153. Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236(4803): 787–792.Google Scholar
  154. Slatkin, M., 1993. Isolation by Distance in equilibrium and non-equilibrium populations. Evolution 47(1): 264–279.Google Scholar
  155. Sork, V. L., F. W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang & D. Grivet, 2010. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology 19: 3806–3823.Google Scholar
  156. Steiner, C. C., J. N. Weber & H. E. Hoekstra, 2007. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biology 5(9): e219.Google Scholar
  157. Storz, J. F. & J. K. Kelly, 2008. Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from the deer mouse globin genes. Genetics 180: 367–379.Google Scholar
  158. Storz, J. F., S. J. Sabatino, F. G. Hoffmann, E. J. Gering, H. Moriyama, N. Ferrand, B. Monteiro & M. W. Nachman, 2007. The molecular basis of high-altitude adaptation in deer mice. PLoS Genetics 3(3): e45.Google Scholar
  159. Thibert-Plante, X. & A. P. Hendry, 2009. Five questions on ecological speciation addressed with individual-based simulations. Journal of Evolutionary Biology 22(1): 109–123.Google Scholar
  160. Tirado, T., M. Saura, E. Rolán-Alvarez & H. Quesada, 2016. Historical biogeography of the marine snail Littorina saxatilis inferred from haplotype and shell morphology evolution in NW Spain. PLoS ONE 11(8): e0161287.Google Scholar
  161. Tollenaere, C., J.-M. Duplantier, L. Rahalison, M. Ranjalahy & C. Brouat, 2011. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection. Molecular Ecology 20(5): 1026–1038.Google Scholar
  162. Trussell, G. C. & R. J. Etter, 2001. Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetica 112–113(1): 321–337.Google Scholar
  163. Vermeij, G. J., 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299: 349–350.Google Scholar
  164. Via, S., 1993. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? American Naturalist 142(2): 352–365.Google Scholar
  165. Via, S., 2009. Natural selection in action during speciation. Proceedings of the National Academy of Sciences of the United States of America 106(Supplement 1): 9939–9946.Google Scholar
  166. Via, S., R. Gomulkiewicz, G. De Jong, S. M. Scheiner, C. D. Schlichting & P. H. Van Tienderen, 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution 10(5): 212–217.Google Scholar
  167. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21): 4407–4414.Google Scholar
  168. Wang, I. J. & G. S. Bradburd, 2014. Isolation by environment. Molecular Ecology 23(23): 5649–5662.Google Scholar
  169. Wang, I. J., R. E. Glor & J. B. Losos, 2013. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters 16(2): 175–182.Google Scholar
  170. Wasserman, T. N., S. A. Cushman, M. K. Schwartz & D. O. Wallin, 2010. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology 25(10): 1601–1612.Google Scholar
  171. Weissing, F. J., P. Edelaar & G. S. van Doorn, 2011. Adaptive speciation theory: a conceptual review. Behavioral Ecology and Sociobiology 65(3): 461–480.Google Scholar
  172. Westberg, E., S. Ohali, A. Shevelevich, P. Fine & O. Barazani, 2013. Environmental effects on molecular and phenotypic variation in populations of Eruca sativa across a steep climatic gradient. Ecology and Evolution 3(8): 2471–2484.Google Scholar
  173. Westram, A. M., J. Galindo, M. Alm Rosenblad, J. W. Grahame, M. Panova & R. K. Butlin, 2014. Do the same genes underlie parallel phenotypic divergence in different Littorina saxatilis populations? Molecular Ecology 23(18): 4603–4616.Google Scholar
  174. Wilding, C. S., R. K. Butlin & J. Grahame, 2001. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology 14: 611–619.Google Scholar
  175. Wood, H. M., J. W. Grahame, S. Humphray, J. Rogers & R. K. Butlin, 2008. Sequence differentiation in regions identified by a genome scan for local adaptation. Molecular Ecology 17(13): 3123–3135.Google Scholar
  176. Wright, S., 1943. Isolation by distance. Genetics 28(2): 114–138.Google Scholar
  177. Yeaman, S. & A. Jarvis, 2006. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B: Biological Sciences 273(1594): 1587–1593.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BioCost Group, Department of Biology, Faculty of ScienceUniversity of A CoruñaA CoruñaSpain
  2. 2.Department of Population GeneticsInstitute of Marine ResearchBergenNorway

Personalised recommendations