Trophic state assessment based on zooplankton communities in Mediterranean lakes

  • Georgia Stamou
  • Matina Katsiapi
  • Maria Moustaka-Gouni
  • Evangelia Michaloudi


Eutrophication assessment is made widely using Carlson Trophic State indices (TSI) [e.g. secchi disc depth (TSISD)] or phytoplankton biomass. Recently, two Carlson type indices using rotifers (TSIROT) and crustaceans (TSICR) were developed from Polish lakes. In the present study, both indices were applied to zooplankton communities from 16 Greek lakes, covering the entire trophic state spectrum, in order to test their application in a different climatic zone, the Mediterranean. The evaluation of the indices (TSIROT and TSICR) was made comparing the trophic state of each sampling/lake based on TSISD and mean summer phytoplankton biomass. Both indices increased across the eutrophication gradient but misclassify the trophic state. We propose a new index, TSIZOO, the average of the formulae TSIROT and TSICR which are significantly correlated with the eutrophication proxies. All three zooplanktonic indices can efficiently detect low (oligotrophic–mesotrophic) and high (eutrophic–hypertrophic) trophic state using the boundaries < 45 for TSIROT and TSIZOO and < 50 for TSICR. All zooplanktonic indices are promising and effective tools for monitoring and assessment of eutrophication of Mediterranean lakes when mean values are used. Still, TSIZOO should be preferred as the best index that correlated with eutrophication which had the best estimations.


Carlson Trophic State indices TSICR TSIZOO TSIROT Greek lakes Eutrophication 



This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme « Human Resources Development, Education and Lifelong Learning » in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Supplementary material

10750_2018_3880_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 59 kb)
10750_2018_3880_MOESM2_ESM.xlsx (77 kb)
Supplementary material 2 (XLSX 76 kb)


  1. Alonso, M., 1996. Crustacea, Branchiopoda. In Ramos, M. A., et al. (eds), Fauna Iberica, Vol. 7. Museo Nacional de Ciencias Naturales Consejo Superior de Investigaciones Cientificas, Madrid.Google Scholar
  2. Alvarez Cobelas, M., C. Rojo & D. G. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64: 13–29.CrossRefGoogle Scholar
  3. Amoros, C., 1984. Introduction pratique à la systématique des organismes des eaux continentales françaises -5- Crustacés Cladocères. Bulletin de la Société Linnéenne de Lyon 53: 71–145.Google Scholar
  4. Azémar, F., T. Maris, B. Mialet, H. Segers, S. Van Damme, P. Meire & M. Tagkx, 2010. Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance. Journal of Plankton Research 32: 981–997.CrossRefGoogle Scholar
  5. Benzie, J. A. H., 2005. The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). In Dumont, H. J. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden.Google Scholar
  6. Boix, D., S. Gascón, J. Sala, M. Martinoy, J. Gifre & X. D. Quintana, 2005. A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian Peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems 15: 635–651.CrossRefGoogle Scholar
  7. Bolawa, O. P., A. A. Adedej & Y. F. Taiwo, 2018. Temporal and Spatial Variations in Abundance and Diversity of Zooplankton Fauna of Opa Reservoir, Obafemi Awolowo University, Ile-Ife, Southwest Nigeria. Notulae Scientia Biologicae 10: 265–274.CrossRefGoogle Scholar
  8. Bolgrien, D. W., J. V. Scharold, T. R. Angradi, T. D. Corry, E. W. Schwieger & J. R. Kelly, 2009. Trophic status of three large Missouri river reservoirs. Lake Reservoir Manage 25: 176–190.CrossRefGoogle Scholar
  9. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, Α. Hillbright-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal οf Zoology 24: 419–456.Google Scholar
  10. Callisto, M., J. Molozzi & J. L. E. Bardosa, 2014. In Ansari, A. A. & S. S. Gill (eds), Eutrophication: Causes, Consequences and Control. Springer, Dordrecht: 55–73.CrossRefGoogle Scholar
  11. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  12. Carlson, R. E. & J. Simpson, 1996. A Coordinator’s Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society, Madison.Google Scholar
  13. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.CrossRefGoogle Scholar
  14. Chrisafi, E., P. Kaspiris & G. Katselis, 2007. Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). Journal of Applied Ichthyology 23: 209–214.CrossRefGoogle Scholar
  15. Cieplinski, A., T. Weisse & U. Obertegger, 2017. High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic evidence. Hydrobiologia 796: 145–159.CrossRefGoogle Scholar
  16. CIS, 2009. Guidance document on eutrophication assessment in the context of european water policies. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No 23. Luxembourg.Google Scholar
  17. Dembowska, E., P. Napiórkowski, T. Mieszczankin & S. Józefowicz, 2015. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecological Indicators 56: 15–22.CrossRefGoogle Scholar
  18. Downing, J. A. & F. H. Rigler, 1984. A manual on methods for the assessment of secondary productivity in fresh waters. Blackwell Scientific, Oxford, UK.Google Scholar
  19. Duggan, I. C., J. D. Green & K. Thomasson, 2001. Do rotifers have potential as bioindicators of lake trophic state? Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27: 3497–3502.Google Scholar
  20. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.CrossRefGoogle Scholar
  21. Dunalska, J. A., A. Napiórkowska-Krzebietke, A. Ławniczak-Malińska, E. Bogacka-Kapusta & G. Wiśniwski, 2018. Restoraton of flow-through lakes – Theory and practice. Ecology & Hydrobiology. Scholar
  22. Dussart, B. H., 1967a. Les copépodes des eaux continentales d’ Europe occidentale. Tome I: calanoïds et Harpacticoïdes. N. Boublée & Cie. Eds., Paris.Google Scholar
  23. Dussart, B. H., 1967b. Les Copépodes des Eaux continentales d’ Europe occidentale. Tome II: Cyclopoïdes et Biologie. N. Boublée & Cie. Eds, Paris.Google Scholar
  24. Dussart, B. H. & D. Defaye, 2001. Introduction to the Copepoda. In Dumont, H. J. F. (ed.), Guides to the Identification of the Macroinvertebrates of the Continental Waters of the World 16. Backhuys Publishers, Leiden.Google Scholar
  25. EC, 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise 2008/915/EC. Official Journal of the European Communities, L332/20. European Commission, Brussels.Google Scholar
  26. Einsle, U., 1996. Copepoda: Cyclopoida Cyclops, Megacyclops, Acanthocyclops. In Dumont, H. J. F. (ed), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 10. SPB Academic Publishing bv, Amsterdam.Google Scholar
  27. Ejsmont-Karabin, J., 2012. The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Polish Journal of Ecology 60: 339–350.Google Scholar
  28. Ejsmont-Karabin, J. & A. Karabin, 2013. The suitability of zooplankton as lake ecosystem indicators: crustacean trophic state index. Polish Journal of Ecology 61: 561–573.Google Scholar
  29. García-Chicote, J., X. Armengol & C. Rojo, 2018. Zooplankton abundance: a neglected key element in the evaluation of reservoir water quality. Limnologica 69: 46–54.CrossRefGoogle Scholar
  30. Geraldes, A. M. & R. Pasupuleti, 2016. Zooplankton: a valuable environmental indicator tool in reservoir ecological management? Asian Journal of Environment & Ecology 1: 1–9.Google Scholar
  31. Gopko, M. & I. V. Telesh, 2013. Estuarine trophic state assessment: new plankton index based on morphology of Keratella rotifers. Estuarine, Coastal and Shelf Science 130: 222–230.CrossRefGoogle Scholar
  32. Gulati, R. D., 1983. Zooplankton and its grazing as indicators of trophic status in Dutch lakes. Environmental Monitoring and Assessment 3: 343–354.CrossRefGoogle Scholar
  33. Gutiérrez, S. G., S. S. S. Sarma & S. Nandini, 2017. Seasonal variations of rotifers from a high altitude urban shallow waterbody, La Cantera Oriente (Mexico City, Mexico). Chinese Journal of Oceanology and Limnology 35: 1387–1397.CrossRefGoogle Scholar
  34. Gutkowska, A., E. Paturej & E. Kowalska, 2013. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55: 887–899.CrossRefGoogle Scholar
  35. Haberman, J. & M. Haldna, 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology 73: 263–273.CrossRefGoogle Scholar
  36. Havens, K. E., 2014. Lake eutrophication and plankton food webs. In Ansari, A. A. & S. S. Gill (eds), Eutrophication: Causes, Consequences and Control, Vol. 2. Springer, Dordrecht: 73–80.CrossRefGoogle Scholar
  37. Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalge. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  38. Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süsswassers. Systematik und Biologie. In: Thienemann A, ed Die Binn Eugewässer. Stuttgart.Google Scholar
  39. International Commission on Zoological Nomenclature. [available on internet at] accessed June 2018.
  40. Jekatierynczuk-Rudczyk, E., P. Zieliński, M. Grabowska, J. Ejsmont-Karabin, M. Karpowicz & A. Więcko, 2014. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland). Environmental Monitoring and Assessment 186: 5101–5121.CrossRefGoogle Scholar
  41. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  42. Jersabek, C. D. & M. F. Leitner, 2013. The Rotifer World Catalog. World Wide Web electronic Publication. [available on internet at], accessed June 2018.
  43. Kane, D. D., S. I. D. Gordon, M. Munawar, M. N. Charlton & D. A. Culver, 2009. The Planktonic Index of Biotic Integrity (P-IBI): an approach for assessing lake ecosystem health. Ecological Indicators 9: 1234–1247.CrossRefGoogle Scholar
  44. Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.Google Scholar
  45. Katsiapi, M., M. Moustaka-Gouni & U. Sommer, 2016. Assessing ecological water quality of freshwaters: PhyCoI – a new phytoplankton community index. Ecological Informatics 31: 22–29.CrossRefGoogle Scholar
  46. Kiefer, F., 1968. Versuch einer revision der gattung Eudiaptomus Kiefer (Copepoda Calanoida). Memorie dell’ Istulo Italiano di Idrobiologia 24: 9–160.Google Scholar
  47. Kiefer, F., 1971. Revision der Bacillifer - gruppe der gattung Arctodiaptomus Kiefer (Crustacea Copepoda: Calanoida). Memorie dell’ Istulo Italiano di Idrobiologia 27: 113–267.Google Scholar
  48. Korovchinsky, N. M., 1992. Sididae and Holopedidae (Crustacea: Daphniformes). Guides to the Identification of the Microinvertebrate of the Continental Waters of the World. SPB Academics, The Hague.Google Scholar
  49. Koste, W., 1978. Rotatoria, die Rãdertiere Mitteleuropas. Gebrüder Borntraeger, Berlin.Google Scholar
  50. Kotov, A., L. Forró, N. M. Korovchinsky & A. Petrusek, 2013. World checklist of freshwater Cladocera species. World Wide Web electronic publication. [available on internet at], accessed September 2018.
  51. Kruskopf, M. & K. J. Flynn, 2006. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist 169: 841–842.CrossRefGoogle Scholar
  52. Kulkarini, D., A. Gergs, U. Hommen, H. T. Ratte & T. G. Preuss, 2013. A plea for the use of copepods in freshwater ecotoxicology. Environmental Science and Pollution Research 20: 75–85.CrossRefGoogle Scholar
  53. Lyche-Solheim, A., C. K. Feld, S. Birk, G. Phillips, L. Carvalho, G. Morabito, U. Mischke, N. Willby, M. Søndergaard, S. Hellsten, A. Kolada, M. Mjelde, J. Böhmer, O. Miler, M. T. Pusch, C. Argillier, E. Jeppesen, T. L. Lauridsen & S. Poikane, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704: 57–74.CrossRefGoogle Scholar
  54. Marszelewski, W., E. A. Dembowska, P. Napiórkowski & A. Solarczyk, 2017. Understanding abiotic and biotic bonditions in Post-Mining Pit lakes for efficient management: a case study (Poland). Hydrobiologia 36: 418–428.Google Scholar
  55. Mash, H., P. K. Westerhoff, L. A. Baker, R. A. Nieman & M.-L. Nguyen, 2004. Dissolved organic matter in Arizona reservoirs: assessment of carbonaceous sources. Organic Chemistry 35: 831–843.Google Scholar
  56. Mazaris, A. D., M. Moustaka-Gouni, E. Michaloudi & D. C. Bobori, 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. Journal of Biogeography 37: 1341–1351.CrossRefGoogle Scholar
  57. Michaloudi, E., 2005. Dry weights of the zooplankton of Lake Mikri Prespa (Macedonia, Greece). Belgian Journal of Zoology 135: 223–227.Google Scholar
  58. Moreno-Gutiérrez, R. M., S. S. S. Sarma, A. S. Sobrino-Figueroa & S. Nandini, 2018. Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (State of Mexico, Mexico): the importance of seasonal sampling. Journal of Limnology. Scholar
  59. Moss, B., D. Stephen, C. Alvarez, E. Becares, W. van de Bund, S. E. Collings, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijów, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine Freshwater Ecosystem 13: 507–549.CrossRefGoogle Scholar
  60. Moustaka-Gouni, M., 1989. Temporal and spatial distribution of chlorophyll a in lake Volvi, Greece. Archiv für Hydrobiologie Supplement 82: 475–485.Google Scholar
  61. Moustaka-Gouni, M., E. Michaloudi & U. Sommer, 2014. Modifying the PEG model for Mediterranean lakes – no biological winter and strong fish predation. Freshwater Biology 59: 1136–1144.CrossRefGoogle Scholar
  62. Nogrady, T. & H. Segers, 2002. Rotifera Volume 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 18. Backhuys Publishers, Leiden.Google Scholar
  63. Nogrady, T., R. Pourriot & H. Segers, 1995. The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 8. SPB Academic Publishing BV, Amsterdam.Google Scholar
  64. Ochocka, A. & A. Pasztaleniec, 2016. Sensitivity of plankton indices to lake trophic conditions. Environmental Monitoring and Assessment 188: 622.CrossRefGoogle Scholar
  65. OECD, Organisation for Economic Co-operation and Development, 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD, Paris.Google Scholar
  66. Pahissa, J., J. Catalan, G. Morabito, G. Dörflinger, J. Ferreira, C. Laplace-Treyture, R. Gîrbea, A. Marchetto, P. Polykarpou & C. de Hoyos, 2015. Benefits and limitations of an intercalibration of phytoplankton assessment methods based on the Mediterranean GIG reservoir experience. Science of the Total Environment 538: 169–179.CrossRefGoogle Scholar
  67. Pejler, B., 1983. Zooplanktic indicators of trophy and their food. Hydrobiologia 101: 111–114.CrossRefGoogle Scholar
  68. Petriki, O., M. Lazaridou & D. Bobori, 2017. A fish-based index for the assessment of the ecological quality of temperate lakes. Ecological Indicators 78: 556–565.CrossRefGoogle Scholar
  69. Reddy, Y. R., 1994. Copepoda: Calanoida: Diaptomidae Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. SPB Academic Publishing, The Hague.Google Scholar
  70. Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  71. Ricci, C. & G. Melone, 2000. Key to the identification of the genera of bdelloid rotifers. Hydrobiologia 418: 73–80.CrossRefGoogle Scholar
  72. Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 8: 71–76.Google Scholar
  73. Sarma, S. S. & S. Nandini, 2006. Review of Recent Ecotoxicological Studies on Cladocerans. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 41: 1417–1430.CrossRefGoogle Scholar
  74. Segers, H., 1995. Rotifera. Vol. 2: The Lecanidae (Monogononta). In Dumont, H. J. F. (ed), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing BV, The Hague.Google Scholar
  75. Segers, H., W. H. De Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim Phylum Rotifera. Zootaxa 3179: 61–68.Google Scholar
  76. Sládecek, V., 1983. Rotifers as indicators of water quality. Hydrobiologia 100: 169–201.CrossRefGoogle Scholar
  77. Smith, V. H., 2003. Eutrophication of freshwater and coastal ecosystems: a global problem. Environmental Science and Pollution Research 10: 126–139.CrossRefGoogle Scholar
  78. Snell, T. W. & C. Joaquim-Justo, 2007. Workshop on rotifers in ecotoxicology. Hydrobiologia 593: 227–232.CrossRefGoogle Scholar
  79. Stamou, G., C. Polyzou, A. Karagianni & E. Michaloudi, 2017. Taxonomic distinctness indices for discriminating patterns in freshwater rotifer assemblages. Hydrobiologia 796: 319–331.CrossRefGoogle Scholar
  80. Taggart, C. T., 1984. Hypolimnetic aeration and zooplankton distribution: a possible limitation to the restoration of cold-water fish production. Canadian Journal of Fisheries and Aquatic Sciences 41: 191–198.CrossRefGoogle Scholar
  81. Tikkanen, T., 1986. Kasviplanktonopas. Suomen Luonnonsuojelun Tuki Oy, Helsinki.Google Scholar
  82. Utermöhl, H., 1958. Zur Vervollkommnung der quantitative Phytoplanktonmethodik. Mitteilungen Internationale Vereinigung Theorie Angewandte Limnologie 9: 1–38.Google Scholar
  83. Vardaka, E., M. Moustaka-Gouni, C. M. Cook & T. Lanaras, 2005. Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology 17: 391–401.CrossRefGoogle Scholar
  84. Walter, T. C. & G. Boxshall, 2018. World of Copepods database. [available on internet at], accessed September 2018.
  85. Wetzel, R. G., 2001. Limnology, 3rd ed Academic Press, San Diego, CA.Google Scholar
  86. Wolfram, G., C. Argillier, J. De Bortoli, G. Buzzi, M. T. Dokulil, E. Hoehn, A. Marchetto, P. J. Martinez, G. Morabito, M. Reichmann, S. Remec-Rekar, U. Riedmüller, C. Rioury, J. Schaumburg, L. Schulz & G. Urbanic, 2009. Reference conditions and WFD compliant class boundaries for phytoplankton biomass and chlorophyll-a in Alpine lakes. Hydrobiologia 633: 45–58.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Zoology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Thessaloniki Water Supply & Sewerage Co. S.A. (EYATH S.A.)ThessalonikiGreece
  3. 3.Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations