Assessing patterns of diversity, bathymetry and distribution at the poles using Hydrozoa (Cnidaria) as a model group

  • Marta Ronowicz
  • Álvaro L. Peña Cantero
  • Borja Mercado Casares
  • Piotr Kukliński
  • Joan J. Soto ÀngelEmail author
Primary Research Paper


The Arctic and Antarctic share many oceanographical features but differ greatly in their geological histories. These divergent aspects lead to similarities and differences between the sets of species inhabiting the poles. However, the patterns are not unambiguously homogenous throughout the tree of life. For the first time, Hydrozoa (Leptothecata and Anthoathecata) is used as a model group to study patterns of diversity, distribution, bathymetry and life history strategies between the polar regions. The analyses are based on a comprehensive literature survey of hydrozoan records. Subtle differences in species richness and contrasting values of endemism are found between the Antarctic (252 species and 58% endemics) and Arctic (233 species and 20% endemics) regions. Shared trends include the lack of a medusa stage in most of the representatives, a high percentage of rarity (Arctic: 49%; Antarctic: 63%), and few common species (18% in both regions). A few species (Grammaria abietina, Obelia longissima and Paragotoea bathybia) and genera (Bouillonia and Gymnogonos) might be tentatively considered bipolar, but further molecular investigation is recommended. The bathymetric distribution mirrors the geomorphological characteristics of each region. The highest species richness occurred in the continental shelves of both polar regions. Updated inventories from each polar region are provided as supplementary material. The present work establishes a fundamental step towards an integrated bipolar framework for the study of diversity and ecology of polar regions, laying the foundation for future approaches on a wide array of topics, from origin and diversification, to changes in the distribution of polar biota.


Hydroids Hydromedusae Arctic Antarctic Southern Ocean Bipolarity Life cycle Checklist Species richness 



We want to express our gratitude to the anonymous reviewers for their insightful suggestions that led us to improve the quality of the manuscript. The study was completed thanks to the grant from the Polish National Science Center to MR (UMO-2014/15/B/NZ8/00237). The research was developed thanks to the postdoctoral Grant to JJSA funded by the Institute of Oceanology Polish Academy of Sciences.

Supplementary material

10750_2018_3876_MOESM1_ESM.doc (350 kb)
Appendix 1a: List of Arctic hydrozoans and accompanying data. Supplementary material 1 (DOC 349 kb)
10750_2018_3876_MOESM2_ESM.docx (45 kb)
Appendix 1b: Reference list and local synonymy of Arctic hydrozoans. Supplementary material 2 (DOCX 45 kb)
10750_2018_3876_MOESM3_ESM.doc (508 kb)
Appendix 2a: List of Antarctic hydrozoans and accompanying data. Supplementary material 3 (DOC 508 kb)
10750_2018_3876_MOESM4_ESM.docx (45 kb)
Appendix 2b: Reference list and local synonymy of Antarctic hydrozoans. Supplementary material 4 (DOCX 46 kb)
10750_2018_3876_MOESM5_ESM.tif (971 kb)
Figure S1. Number and percentage of endemic species from each polar region according to bathymetric patterns. Supplementary material 5 (TIFF 971 kb)


  1. Allcock, A. L. & H. J. Griffiths, 2015. Bipolarity. In De Broyer, C., P. Koubbi, H. J. Griffiths, B. Raymond, C. d’Udekem d’Acoz, A. P. Van de Putte, B. Danis, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post & Y. Ropert-Coudert (eds), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge: 431–436.Google Scholar
  2. Altuna, A., 2007. Bathymetric distribution patterns and biodiversity of benthic Medusozoa (Cnidaria) in the Bay of Biscay (north-eastern Atlantic). Journal of the Marine Biological Association of the United Kingdom 87: 681–694.CrossRefGoogle Scholar
  3. Appeltans, W., T. S. Ahyong, G. Anderson, et al., 2012. The magnitude of global marine species diversity. Current Biology 22: 2189–2202.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aronson, R. B. & D. B. Blake, 2001. Global climate change and the origin of modern Benthic Communities in Antarctica. American Zoologist 41: 27–39.Google Scholar
  5. Aronson, R. B., S. Thatje, A. Clarke, L. S. Peck, D. B. Blake, C. D. Wilga & B. A. Seibel, 2007. Climate change and invasibility of the Antarctic benthos. Annual Review of Ecology, Evolution, and Systematics 38: 129–154.CrossRefGoogle Scholar
  6. Bilyard, G. R., 1991. Distribution of polar polychaetes: test of a hypothesis. Ophelia 5: 529–538.Google Scholar
  7. Bluhm, B. A., W. G. Ambrose Jr., M. Bergmann, L. M. Clough, A. V. Gebruk, C. Hasemann, K. Iken, M. Klages, I. R. MacDonald, P. E. Renaud, I. Schewe, T. Soltwedel & M. Włodarska-Kowalczuk, 2011. Diversity of the arctic deep-sea benthos. Marine Biodiversity 41(1): 87–107.CrossRefGoogle Scholar
  8. Błażewicz-Paszkowycz, M. & J. Sekulska-Nalewajko, 2004. Tanaidacea (Crustacea, Malacostraca) of two polar fjords: Kongsfjorden (Arctic) and Admiralty Bay (Antarctic). Polar Biology 27(4): 222–230.CrossRefGoogle Scholar
  9. Boero, F. & E. Bonsdorff, 2007. A conceptual framework for marine biodiversity and ecosystem functioning. Marine Ecology 28: 134–145.CrossRefGoogle Scholar
  10. Boero, F. & J. Bouillon, 1993. Zoogeography and life cycle patterns of Mediterranean hydromedusae (Cnidaria). Biological Journal of the Linnean Society 48: 239–266.CrossRefGoogle Scholar
  11. Brandt, A., M. Błażewicz-Paszkowycz, R. N. Bamber, U. Muhlenhardt-Siegel, M. V. Malyutina, S. Kaiser, C. De Broyer & C. Hevermans, 2012. Are there peracarid species in the deep sea (Crustacea: Malacostraca)? Polish Polar Research 33: 139–162.CrossRefGoogle Scholar
  12. Brey, T., C. Dahm, M. Gorny, M. Klages, M. Stiller & W. E. Arntz, 1996. Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Science 8: 3–6.CrossRefGoogle Scholar
  13. Briggs, J. C., 1974. Marine zoogeography. McGraw-Hill, New York.Google Scholar
  14. Briggs, J. C., 2007. Marine biogeography and ecology: invasions and introductions. Journal of Biogeography 34: 193–198.CrossRefGoogle Scholar
  15. Cartwright, P. & A. M. Nawrocki, 2010. Character evolution in Hydrozoa (phylum Cnidaria). Integrative and Comparative Biology 50: 456–472.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Clarke, A. & J. A. Crame, 2010. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society 365: 3655–3666.CrossRefGoogle Scholar
  17. Clarke, A. & C. Harris, 2003. Polar marine ecosystems: major threats and future change. Environmental Conservation 30: 1–25.CrossRefGoogle Scholar
  18. Clarke, A., 1996. The distribution of Antarctic marine benthic communities. In Ross, R. M., E. E. Hofmann & L. B. Quetin (eds), Foundations for ecological research west of the Antarctic Peninsula. American Geophysical Union, Washington DC: 219–230.CrossRefGoogle Scholar
  19. Clarke, A. & J. A. Crame, 1989. The origin of the Southern Ocean marine fauna. In Crame, J. A. (ed.), Origins and evolution of the Antarctic biota, Vol. 47. Geological Society London Special Publications, London: 253–268.Google Scholar
  20. Clarke, A. & I. A. Johnston, 1996. Evolution and adaptive radiation of Antarctic fishes. Trends in Ecology and Evolution 11: 212–218.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Clarke, A. & N. M. Johnston, 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology 41: 47–114.Google Scholar
  22. Clarke, A., D. K. A. Barnes & D. A. Hodgson, 2005. How isolated is Antarctica? Trends in Ecology & Evolution 20: 1–3.CrossRefGoogle Scholar
  23. Clarke, K. R. & R. N. Gorley, 2015. PRIMER v.7: user manual tutorial. PRIMER-E Ltd, Auckland.Google Scholar
  24. Conlan, K. E., H. S. Lenihan, R. G. Kvitek & J. S. Oliver, 1998. Ice scour disturbance to benthic communities in the Canadian High Arctic. Marine Ecology Progress Series 166: 1–16.CrossRefGoogle Scholar
  25. Cornelius, P. F. S., 1981. Life cycle, dispersal and distribution among the Hydroida. Porcupine Newsletter 2: 47–50.Google Scholar
  26. Crame, J. A., 1999. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Scientia Marina 63: 1–14.CrossRefGoogle Scholar
  27. Crame, J. A., 1993. Bipolar molluscs and their evolutionary implications. Journal of Biogeography 20: 145–161.CrossRefGoogle Scholar
  28. Darwin, C., 1872. The origin of species. Murray, London.Google Scholar
  29. Dayton, P. K., 1990. Polar benthos. In Smith Jr., W. O. (ed.), Polar Oceanography Part B: Chemistry, Biology, and Geology. Academic Press, San Diego: 631–685.CrossRefGoogle Scholar
  30. Dayton, P. K., B. J. Mordida & F. Bacon, 1994. Polar marine communities. American Zoologist 34: 90–99.CrossRefGoogle Scholar
  31. De Broyer, C., B. Danis, et al., 2011. How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep Sea Research Part II: Topical Studies in Oceanography 58: 5–17.CrossRefGoogle Scholar
  32. De Broyer, C., A. Clarke, P. Koubbi, E. Pakhomov, F. Scott, E. Vanden Berghe & B. Danis, 2018. Register of Antarctic Marine Species. Accessed at on 2018-03-01.
  33. Dell, R. K., 1972. Antarctic benthos. Advances in Marine Biology 10: 1–216.CrossRefGoogle Scholar
  34. Dimmler, W., J. Ragua-Gil, A. Starmans, I. Suck & N. Teixido, 2001. Comparative Community Analysis by Imaging Methods. In: Arntz, W. E. & T. Brey (eds), The expedition Antarktis XVII/3 (EASIZ III) of RV ‘Polarstern’ in 2000. Berichte zur Polar- und Meeresforschung 402: 63–67.Google Scholar
  35. Dunton, K., 1992. Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends in Ecology & Evolution 7: 183–189.CrossRefGoogle Scholar
  36. Eastman, J. E., 1997. Comparison of the Antarctic and Arctic fish faunas. Cybium 21: 335–352.Google Scholar
  37. Fernandez, M. O. & A. C. Marques, 2018. Combining bathymetry, latitude, and phylogeny to understand the distribution of deep Atlantic hydroids (Cnidaria). Deep-Sea Research Part I 133: 39–48.CrossRefGoogle Scholar
  38. Figuerola, B., D. K. A. Barnes, P. Brickle & P. E. Brewin, 2017. Bryozoan diversity around the Falkland and South Georgia Islands: overcoming Antarctic barriers. Marine Environmental Research 126: 81–94.PubMedCrossRefGoogle Scholar
  39. Gaston, K. J., 2000. Biodiversity: higher taxon richness. Progress in Physical Geography 24: 117–127.CrossRefGoogle Scholar
  40. George, R. Y., 1977. Dissimilar and similar trends in Antarctic and Arctic marine benthos. In Dunbar, M. J. (ed.), Polar oceans. Arctic Institute of North America, Calgary: 391–408.Google Scholar
  41. Gibbons, M. J., A. J. Richardson, M. V. Angel, E. Buecher, G. Esnal, M. A. Fernández Álamo, R. Gibson, H. Itoh, P. Pugh, R. Boettger-Schnack & E. Thuesen, 2005. What determines the likelihood of species discovery in marine holozooplankton: is size, range or depth important? Oikos 109: 567–576.CrossRefGoogle Scholar
  42. Gibbons, M. J., L. A. Janson, A. Ismail & T. Samaai, 2010. Life cycle strategy, species richness and distribution in marine Hydrozoa (Cnidaria: Medusozoa). Journal of Biogeography 37: 441–448.CrossRefGoogle Scholar
  43. Gili, J. M. & R. C. Coma, 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology & Evolution 13: 316–321.CrossRefGoogle Scholar
  44. Gili, J. M., V. Alvà, F. Pagès, H. Klöser & W. E. Arntz, 1996. Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biology 16: 507–512.CrossRefGoogle Scholar
  45. Gili, J. M., R. Zapata, E. Isla, D. Vaqué, A. Barbosa, L. García-Sancho & A. Quesada, 2016. Introduction to the special issue on the life in Antarctica: boundaries and gradients in a changing environment (XIth SCAR Biology Symposium). Polar Biology 39: 1–10.CrossRefGoogle Scholar
  46. Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.CrossRefGoogle Scholar
  47. Govindarajan, A. F., F. Boero & K. M. Halanych, 2006. Phylogenetic analysis with multiple markersindicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Molecular Phylogenetics and Evolution 38: 820–834.PubMedCrossRefGoogle Scholar
  48. Gravili, C., C. G. Di Camilo, S. Piraino & F. Boero, 2013. Hydrozoan species richness in the Mediterranean Sea: past and present. Marine Ecology 34: 41–62.CrossRefGoogle Scholar
  49. Griffiths, H. J., 2010. Antarctic Marine Biodiversity—What do we know about the distribution of life in the Southern Ocean? PLoS ONE 5: e11683.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Griffths, H. J., B. Danis & A. Clarke, 2011. Quantifying Antarctic marine biodiversity: the SCARMarBIN data portal. Deep Sea Research Part II: Topical Studies in Oceanography 58: 18–29.CrossRefGoogle Scholar
  51. Gutt, J. & D. Piepenburg, 2003. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Marine Ecology Progress Series 253: 77–83.CrossRefGoogle Scholar
  52. Gutt, J., A. Starmans & G. Dieckmann, 1996. Impact of iceberg scouring on polar benthic habitats. Marine Ecology Progress Series 137: 311–316.CrossRefGoogle Scholar
  53. Gutt, J., G. Hosie & M. Stoddart, 2010. Marine Life in the Antarctic. In McIntyre, A. D. (ed.), Life in the World’s Oceans: Diversity, Distribution, and Abundance. Blackwell Publishing, Oxford: 203–220.CrossRefGoogle Scholar
  54. Gutt, J., V. Cummings, P. Dayton, E. Isla, A. Jentsch & S. Schiaparelli, 2016. Antarctic marine animal forests: three-dimensional communities in Southern Ocean ecosystems. In Rossi, S., L. Bramanti, A. Gori & C. Orejas (eds), Marine Animal Forests. Springer, Cham: 1–30.Google Scholar
  55. Hassold, N. J. C., D. K. Rea, B. A. van der Pluijm & J. M. Parés, 2009. A physical record of the Antarctic Circumpolar Current: late Miocene to recent slowing of abyssal circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 275: 28–36.CrossRefGoogle Scholar
  56. Havermans, C., G. Sonet, C. d’Udekem d’Acoz, Z. T. Nagy, P. Martin, S. Brix, T. Riehl, S. Agrawal & C. Held, 2013. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8(9): e74218.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hedgpeth, J. W., 1969. Introduction to Antarctic zoogeography. Distribution of selected groups of marine invertebrates in waters south of 35°S latitude. In Bushnell, V. C. & J. W. Hedgpeth (eds), Antarctic Map Folio Series, Folio 11. American Geographical Society, New York: 1–29.Google Scholar
  58. Jakobsson, M., 2002. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochemistry Geophysics Geosystems 3: 1–12.CrossRefGoogle Scholar
  59. Jakobsson, M., L. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, et al., 2012. The international bathymetric chart of the Arctic Ocean (IBCAO) Version 30. Geophysical Research Letters 39: L12609.Google Scholar
  60. Jażdżewski, K., J. M. Węsławski & C. De Broyer, 1995. A comparison of the amphipod faunal diversity in two polar fjords: Admiralty Bay, King George Island (Antarctic) and Hornsund, Spitsbergen (Arctic). Polish Archives of Hydrobiology 42: 367–384.Google Scholar
  61. Johnson, G. L., 1990. Morphology and plate tectonics: the modern polar oceans. In Bleil, U. & J. Thiede (eds), Geological History of the Polar Oceans: Arctic Versus Antarctic. Kluwer Academic Publishers, Dordrecht: 11–29.CrossRefGoogle Scholar
  62. Jumars, P. A. & K. Fauchald, 1977. Between-community contrasts in successful polychaete feeding strategies. In Coull, B. (ed.), Ecology of Marine Benthos. University of South Carolina Press, Columbia: 1–20.Google Scholar
  63. Knox, G. A. & J. K. Lowry, 1977. A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the Amphipoda and the Polychaeta. In Dunbar, M. J. (ed.), Polar oceans. Arctic Institute of North America, Calgary: 423–462.Google Scholar
  64. Kramp, P., 1961. Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40: 1–469.Google Scholar
  65. Krug, A. Z., D. Jablonski & J. W. Valentine, 2008. Species-genus ratios reflect a global history of diversification and range expansion in marine bivalves. Proceedings of the Royal Society of London B 275: 1117–1123.CrossRefGoogle Scholar
  66. Krylov, A. A., I. A. Andreeva, C. Vogt, J. Backman, V. V. Krupskaya, G. V. Grikurov, K. Moran & H. Shoji, 2008. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 23: PA1S06.CrossRefGoogle Scholar
  67. Kukliński, P. & D. K. A. Barnes, 2010. First bipolar benthic brooder. Marine Ecology Progress Seriess 401: 15–20.CrossRefGoogle Scholar
  68. Mańko, M. K., A. Panasiuk & M. I. Żmijewska, 2015. Pelagic coelenterates in the Atlantic sector of the Arctic Ocean—species diversity and distribution as water mass indicators. Oceanological and Hydrobiological Studies 44(4): 466–479.CrossRefGoogle Scholar
  69. Martín-Ledo, R. & P. J. López-González, 2014. Brittle stars from Southern Ocean (Echinodermata: ophiuroidea). Polar Biology 37: 73–88.CrossRefGoogle Scholar
  70. Menzies, R. J., R. Y. George & G. T. Rowe, 1973. Abyssal Environment and Ecology of the World Oceans. Wiley-Interscience, New York.Google Scholar
  71. Mercado Casares, B. & A. L. Peña Cantero, 2018. Bathymetric distribution pattern in Antarctic benthic hydroids. Polar Biology 41(6): 1245–1255.CrossRefGoogle Scholar
  72. Mercado Casares, B., J. J. Soto Àngel & A. L. Peña Cantero, 2017. Towards a better understanding of Southern Ocean biogeography: new evidence from benthic hydroids. Polar Biology 40: 1975–1988.CrossRefGoogle Scholar
  73. Miranda, T. P., A. L. Peña Cantero & A. C. Marques, 2013. Southern Ocean areas of endemism: a reanalysis using benthic hydroids (Cnidaria: Hydrozoa). Latin American Journal of Aquatic Research 51: 1003–1009.CrossRefGoogle Scholar
  74. Moles, J., H. Wägele, U. Gabriele & C. Avila, 2017. Bipolarity in sea slugs: a new species of Doridunculus (Mollusca: Nudibranchia: Onchidoridoidea) from Antarctica. Organisms Diversity & Evolution 17: 101–109.CrossRefGoogle Scholar
  75. Naumov, D. V., 1969. Hydroids and Hydromedusae of the USRR. Israel Program for Scientific Translation, Jerusalem.Google Scholar
  76. Nørgaard-Pedersen, N., R. F. Spielhagen, H. Erlenkeuser, P. M. Grootes, J. Heinemeier & J. Knies, 2003. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography 18(3): 1063.CrossRefGoogle Scholar
  77. Orejas, C., J. M. Gili, W. E. Arntz, J. D. Ros, P. J. López, N. Teixidó & P. Filipe, 2000. Benthic suspension feeders, key players in Antarctic marine ecosystems? Contributions to Science 1: 299–311.Google Scholar
  78. Orejas, C., S. Rossi, A. Peralba, E. Garcia, J. M. Gili & H. Lippert, 2013. Feeding ecology and trophic impact of the hydroid Obelia dichotoma in the Kongsfjorden (Spitsbergen, Arctic). Polar Biology 36: 61–72.CrossRefGoogle Scholar
  79. Pabis, K., M. Kędra & S. Gromisz, 2015. Distinct or similar? Soft bottom polychaete diversity in Arctic and Antarctic glacial fjords. Hydrobiologia 742: 279–294.CrossRefGoogle Scholar
  80. Paolo, F. S., H. A. Fricker & L. Padman, 2015. Volume loss from Antarctic ice shelves is accelerating. Science 348(6232): 327–331.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pawlowski, J., J. Fahrni, B. Lecroq, D. Longet, N. Cornelius, L. Excoffier, T. Cedhagen & A. J. Gooday, 2007. Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology 16: 4089–4096.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Payer, D. C., A. B. Josefson & J. Fjeldså, 2013. Species Diversity in the Arctic. In Meltofte, H. (ed.), Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity, Conservation of Arctic Flora and Fauna, Akureyri, Iceland: 1–674.Google Scholar
  83. Peña Cantero, A. L., 2004. How rich is the deep–sea Antarctic benthic hydroid fauna? Polar Biology 27: 767–774.CrossRefGoogle Scholar
  84. Peña Cantero, A. L., 2014a. Benthic hydroids (Cnidaria: Hydrozoa). In De Broyer, C., P. Koubbi, H. J. Griffiths, B. Raymond, C. d’. Udekem d’Acoz, A. P. Van de Putte, B. Danis, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post & Y. Ropert-Coudert (eds), Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge: 103–106.Google Scholar
  85. Peña Cantero, A. L., 2014b. Revision of the Antarctic species of Halecium Oken, 1815 (Cnidaria, Hydrozoa, Haleciidae). Zootaxa 3790: 243–280.CrossRefGoogle Scholar
  86. Peña Cantero, A. L., 2015. Review of some little-known benthic hydroids (Cnidaria, Hydrozoa) from the Southern Ocean. Zootaxa 3972: 369–392.CrossRefGoogle Scholar
  87. Peña Cantero, A. L., 2018. Benthic hydroids (Cnidaria, Hydrozoa) from the Ross Sea (Antarctica) collected by the New Zealand Antarctic expedition BioRoss 2004 with RV Tangaroa. Zootaxa 4293: 1–65.CrossRefGoogle Scholar
  88. Peña Cantero, A. L. & A. M. García Carrascosa, 1999. Biogeographical distribution of the benthic thecate hydroids collected during the Spanish Antartida 8611 expedition and comparison between Antarctic and Magellan benthic hydroid faunas. Scientia Marina 63: 209–218.CrossRefGoogle Scholar
  89. Peña Cantero, A. L., A. Svoboda & W. Vervoort, 1997. Species of Staurotheca Allman, 1888 (Cnidaria, Hydrozoa) from recent Antarctic expeditions with R.V. ‘Polarstern’, with the description of six new species. Journal of Natural History 31: 329–381.CrossRefGoogle Scholar
  90. Peña Cantero, A. L., F. Boero & S. Piraino, 2013. Shallow-water benthic hydroids from Tethys Bay (Terra Nova Bay, Ross Sea, Antarctica). Polar Biology 36(5): 731–753.CrossRefGoogle Scholar
  91. Piepenburg, D., 2005. Recent research on Arctic benthos: common notions need to be revisited. Polar Biology 28: 733–755.CrossRefGoogle Scholar
  92. Piepenburg, D., J. Voß & J. Gutt, 1997. Assemblages of sea stars(Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): a comparison of diversityand abundance. Polar Biology 17: 305–322.CrossRefGoogle Scholar
  93. Piepenburg, D., P. Archambault, W. G. Ambrose Jr., A. Blanchard, B. Bluhm, C. L. Carroll, K. E. Conlan, M. Cusson, H. M. Feder, J. M. Grebmeier, S. C. Jewett, M. Levesque, V. V. Petryashev, M. K. Sejr, B. I. Sirenko & M. Włodarska-Kowalczuk, 2011. Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas. Marine Biodiversity 41: 51–70.CrossRefGoogle Scholar
  94. Postaire, B., H. Magalon, C. A. F. Bourmaud & J. H. Bruggemann, 2016. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Molecular Phylogenetics and Evolution 105: 36–49.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Postaire, B., P. Gelin, J. H. Bruggemann, M. Pratlong & H. Magalon, 2017. Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecology and Evolution 7: 8170–8186.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ronowicz, M., M. Włodarska-Kowalczuk & P. Kukliński, 2011. Patterns of hydroid (Cnidaria, Hydrozoa) species richness and distribution in an Arctic glaciated fjord. Polar Biology 34: 1437–1445.CrossRefGoogle Scholar
  97. Ronowicz, M., M. Włodarska-Kowalczuk & P. Kukliński, 2013. Hydroid epifaunal communities in Arctic coastal waters(Svalbard): effects of substrate characteristics. Polar Biology 36: 705–718.CrossRefGoogle Scholar
  98. Ronowicz, M., P. Kukliński & G. M. Mapstone, 2015. Trends in the diversity, distribution and life history strategy of Arctic Hydrozoa (Cnidaria). PLoS ONE 10: e0120204.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Santelices, B., 2007. The discovery of kelp forests in deep-water habitats of tropical regions. Proceedings of the National Academy of Sciences United States of America 104: 19163–19164.CrossRefGoogle Scholar
  100. Schäfer, P., 2007. Diversity patterns of modern Arctic and Antarctic bryozoans. In Okada, H., S. F. Mawatari, N. Suzuki & P. Gautam (eds), Origin and Evolution of Natural Diversity, Proceedings of International Symposium “The Origin and Evolution of Natural Diversity”, 1–5 October 2007, Sapporo: 57–66.Google Scholar
  101. Schuchert, P., 2010. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 2. Revue Suisse de Zoologie 117: 337–555.CrossRefGoogle Scholar
  102. Schuchert, P., 2014. High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Molecular Phylogenetics and Evolution 76: 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Schuchert, P., 2018. WoRMS. Accessed at on 2018–03–01.
  104. Schuchert, P., A. Hosia & L. Leclere, 2017. Identification of the polyp stage of three leptomedusa species using DNA barcoding. Revue Suisse de Zoologie 124: 167–182.Google Scholar
  105. Segonzac, M. & W. Vervoort, 1995. First record of the genus Candelabrum (Cnidaria, Hydrozoa, Athecata) from the Mid-Atlantic Ridge: a description of a new species and a review of the genus. Bulletin du Muséum National d’Histoire Naturelle, Paris 17: 31–64.Google Scholar
  106. Sirenko, B. I., 2009. Main differences in macrobenthos and benthic communities of the Arctic and Antarctic, as illustrated by comparison of the Laptev and Weddell Sea faunas. Russian Journal of Marine Biology 35: 445–453.CrossRefGoogle Scholar
  107. Sirenko, B. I., C. Clarke, R. R. Hopcroft, F. Huettmann, B. A. Bluhm & R. Gradinger, 2018. The Arctic Register of Marine Species (ARMS) compiled by the Arctic Ocean Diversity (ArcOD). Accessed at on 2018-03-01.
  108. Soto Àngel, J. J. & A. L. Peña Cantero, 2017. A new piece in the puzzle of the Antarctic biogeography: what do benthic hydroids tell us about the Scotia Arc affinities? Polar Biology 40: 863–872.CrossRefGoogle Scholar
  109. Spalding, M. D., H. E. Fox, G. R. Allen, N. Davidson, Z. A. Ferdaña, M. Finlayson, B. S. Halpern, M. A. Jorge, A. Lombana, S. A. Lourie, K. D. Martin, E. McManus, J. Molnar, C. A. Recchia & J. Robertson, 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57: 573–583.CrossRefGoogle Scholar
  110. Starmans, A. & J. Gutt, 2002. Mega-epibenthic diversity: a polar comparison. Marine Ecology Progress Series 225: 45–52.CrossRefGoogle Scholar
  111. Starmans, A., J. Gutt & W. E. Arntz, 1999. Mega-epibenthic communities in Arctic and Antarctic shelf areas. Marine Biology 135: 269–280.CrossRefGoogle Scholar
  112. Steinberg, D. K., K. E. Ruck, M. R. Gleiber, L. M. Garzio, J. S. Cope, K. S. Bernard, S. E. Stammerjohn, O. M. E. Schofield, L. B. Quetin & R. M. Ross, 2015. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Research Part I: Oceanographic Research Papers 101: 54–70.CrossRefGoogle Scholar
  113. Stepanjants, S. D., 1979. Hydroids of the antarctic and subantarctic waters. In: Biological results of the Sovietic Antarctic Expedition 6 (in Russian). Issled Fauny Morei 20: 1–200.Google Scholar
  114. Stepanjants, S. D. & A. Svoboda, 2008. The genus Gymnogonos (Anthoathecata: Capitata: Corymorphidae)—redescription of known species and description of a new species from the North Pacific. Journal of the Marine Biological Association of the United Kingdom 88: 1619–1629.CrossRefGoogle Scholar
  115. Stepanjants, S. D., A. Svoboda & W. Vervoort, 1997. The problem of bipolarity, with emphasis on the Medusozoa (Cnidaria: Anthozoa excepted). In Den Hartod, J. C. (ed), Proceedings of the 6th International Conference on Coelenterate Biology. National Natuurhistorisch Museum, Leiden: 455–464.Google Scholar
  116. Stepanjants, S. D., G. Cortese, S. B. Kruglikova & K. R. Bjørklund, 2006. A review of bipolarity concepts: history and examples from Radiolaria and Medusozoa (Cnidaria). Marine Biology Research 2: 200–241.CrossRefGoogle Scholar
  117. Stonehouse, B., 1989. Polar Ecology. Chapman and Hall, New York.CrossRefGoogle Scholar
  118. Stroeve, J., M. M. Holland, W. Meir, T. Scambos & M. Serreze, 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters 34: L09501.CrossRefGoogle Scholar
  119. Svoboda, A., S. D. Stepanjants & I. Smirnov, 1997. Two polar Hydractinia species (Cnidaria), epibiotic on two closely related brittle stars (Echinodermata): an example for a taxonomy and ecological bipolarity. In Battaglia, B., J. Valencia & D. W. H. Walton (eds), Antartic communities: species, structure and survival. Cambridge University Press, Cambridge: 22–25.Google Scholar
  120. Svoboda, A., S. D. Stepanjants & J. Ljubenkov, 2006. The genus Bouillonia (Cnidaria: Hydrozoa: Anthoathecata). Three species from the northern and Southern hemispheres, with a discussion of bipolar distribution of this genus. Zoologische Mededelingen 80: 185–206.Google Scholar
  121. Van Valen, L., 1973. A new evolutionary law. Evolutionary Theory 1: 1–30.Google Scholar
  122. Walczowski, W. & J. Piechura, 2006. New evidence of warming propagating toward the Arctic Ocean. Geophysical Research Letters 33: L12601.CrossRefGoogle Scholar
  123. Walkusz, W., S. Kwaśniewski, K. Dmoch, H. Hop, M. I. Żmijewska, L. Bielecka, S. Falk-Petersen & J. Siciński, 2004. Characteristics of the Arctic and Antarctic mesozooplankton in the neritic zone during summer. Polish Polar Research 25: 275–291.Google Scholar
  124. Wang, M. & J. E. Overland, 2009. A sea ice free summer Arctic within 30 years? Geophysical Research Letters 36: L07502.Google Scholar
  125. Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.CrossRefGoogle Scholar
  126. Weir, J. T. & D. Schluter, 2007. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315: 1574–1576.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Weydmann, A., J. Carstensen, I. Goszczko, K. Dmoch, A. Olszewska & S. Kwaśniewski, 2014. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Marine Ecology Progress Series 501: 41–52.CrossRefGoogle Scholar
  128. Włodarska-Kowalczuk, M., J. Siciński, S. Gromisz, M. A. Kendall & S. Dahle, 2007. Similar soft-bottom polychaete diversity in Arctic and Antarctic marine inlets. Marine Biology 151: 607–616.CrossRefGoogle Scholar
  129. Włodarska-Kowalczuk, M., P. Kukliński, M. Ronowicz, J. Legeżynska & S. Gromisz, 2009. Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biology 32: 897–905.CrossRefGoogle Scholar
  130. WoRMS Editorial Board, 2018. World Register of Marine Species. Accessed at on 2018-03-01.
  131. Xavier, J. C., A. Barbosa, S. Agustí, et al., 2013. Polar marine biology science in Portugal and Spain: recent advances and future perspectives. Journal of Sea Research 83: 9–29.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland
  2. 2.Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
  3. 3.Natural History MuseumLondonUK
  4. 4.Laboratori de Biologia Marina, Departament de Zoologia, Facultat de Ciències BiològiquesUniversitat de ValènciaValenciaSpain

Personalised recommendations