Advertisement

Hydrobiologia

, Volume 830, Issue 1, pp 45–61 | Cite as

Response to environmental, spatial, and temporal mechanisms of the phytoplankton metacommunity: comparing ecological approaches in subtropical reservoirs

  • Jascieli Carla BortoliniEmail author
  • Pedro Rogério Leandro da Silva
  • Gilmar Baumgartner
  • Norma Catarina Bueno
Primary Research Paper

Abstract

Our objective was to evaluate the effect of environmental, spatial, and temporal predictors on different ecological approaches in phytoplankton metacommunity of two subtropical reservoirs. Our hypothesis was that the morphological structure, represented by morphological traits, would be related to both environmental and spatial factors, while the functional structure, represented by the physiological, ecological, and morphological traits, would be related to environmental factors. We also test the temporal factor for both approaches. Sampling was performed in two Brazilian subtropical reservoirs along six sampling periods. We applied the morphology-based functional classification (MBFG) and the classification based on functional group (FG) as surrogates to phytoplankton metacommunity and performed the partition variation to investigate the influences of different predictors. We found spatial and temporal variability of MBFG and FG, and although the metacommunity models presented weak relations, the environmental, spatial, and temporal processes appear to influence the phytoplankton morpho-functional structure along the longitudinal axis reservoirs. However, the relative importance of these processes seems to depend on the type of functional attribute evaluated since the MBFGs were related to the spatial and temporal predictor, while the FGs were associated with environmental, spatial, and temporal predictors.

Keywords

Morphological traits Functional traits Planktonic algae Variation partitioning 

Notes

Acknowledgements

The authors would like to thank the CNPq (National Council for Scientific and Technological Development) for the post-doctorate fellowship granted to JCB (Process 165796/2015-4). NCB also thanks CNPq for the research Grant (Process 307196/2013-5). We would also like to thank the GERPEL (Research Group on Fishery Resources and Limnology) for providing technical support. We are also grateful to the anonymous reviewers, whose detailed comments and constructive suggestions improved the quality of the manuscript.

References

  1. American Public Health Association – APHA, 2005. Standard methods: for the examination of water and wastewater, 21st ed. APHA, Washington.Google Scholar
  2. Beamud, S. G., J. G. Léon, C. Kruk, F. Pedrozo & M. Diaz, 2015. Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina. Environmental Monitoring Assessment 187(5): 271.CrossRefGoogle Scholar
  3. Benda, L., K. Andras, D. Miller & P. Bigelow, 2004. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resources Research 40: W05402.CrossRefGoogle Scholar
  4. Beisner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.CrossRefGoogle Scholar
  5. Bicudo, C. E. M. & M. Menezes, 2006. Gêneros de Algas de Águas continentais do Brasil: chave para identificação e descrições. RiMa, São Carlos.Google Scholar
  6. Boltovskoy, A., R. O. Echenique & J. M. Guerrero, 2013. Sucesivas invasiones de especies de Ceratium (Dinophyceae) en Sudamérica: un proceso que lleva dos décadas. Boletín de la Sociedad Argentina de Botánica 48: 27.Google Scholar
  7. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  8. Bortolini, J. C., A. Pineda, L. C. Rodrigues, S. Jati & L. F. M. Velho, 2017. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: a metacommunity approach. Freshwater Biology 62: 1756–1767.CrossRefGoogle Scholar
  9. Câmara, F. R. A., O. Rocha, E. K. R. Pessoa, S. Chellapa & N. T. Chellapa, 2015. Morphofunctional changes of phytoplankton community during pluvial anomaly in a tropical reservoir. Brazilian Journal of Biology 75: 628–637.CrossRefGoogle Scholar
  10. Carneiro, F. M., L. M. Bini & L. C. Rodrigues, 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecological Indicators 10: 249–255.CrossRefGoogle Scholar
  11. Cavalcante, K. P., J. C. Zanotelli, C. C. Muller, K. D. Scherer, J. C. Frizzo, T. A. V. Ludwig & L. S. Cardoso, 2013. First record of expansive Ceratium Schrank, 1793 species (Dinophyceae) in southern Brazil, with notes on their dispersive patterns in Brazilian environments. Check List 9: 862–866.CrossRefGoogle Scholar
  12. Cavalcante, K. P., L. S. Cardoso, R. Sussella & V. Becker, 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia 771: 265–280.CrossRefGoogle Scholar
  13. Chaparro, G., Z. Horváth, I. O’Farrell, R. Ptacnik & T. Hein, 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology 63: 380–391.CrossRefGoogle Scholar
  14. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.CrossRefGoogle Scholar
  15. Cole, G. A., 1994. Textbook of Limnology. Waveland Press Inc, Illinois.Google Scholar
  16. Crossetti, L. O., D. C. Bicudo, L. M. Bini, R. D. Dala-Corte, C. Ferragut & C. E. M. Bicudo, 2018. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia.  https://doi.org/10.1007/s10750-018-3607-y.CrossRefGoogle Scholar
  17. Datry, T., N. Bonada & J. Heino, 2016. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125: 149–159.CrossRefGoogle Scholar
  18. De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.CrossRefGoogle Scholar
  19. Fraisse, S., M. Bormans & Y. Lagadeuc, 2013. Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquatic Ecology 47: 315–327.CrossRefGoogle Scholar
  20. Fraisse, S., M. Bormans & Y. Lagadeuc, 2015. Turbulence effects on phytoplankton morphofunctional traits selection. Limnology and Oceanography. 60(3): 872–884.CrossRefGoogle Scholar
  21. Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.CrossRefGoogle Scholar
  22. Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.CrossRefGoogle Scholar
  23. Huszar, V. L. M., J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe & L. H. Silva, 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 37: 1190–1200.Google Scholar
  24. Izaguirre, I., J. F. Saad, M. R. Schiaffino, A. Vinocur, G. Tell, M. L. Sanchez, L. Allende & R. Sinistro, 2015. Drivers of phytoplankton diversity in Patagonian and Antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764: 157–170.CrossRefGoogle Scholar
  25. Jati, S., L. C. Rodrigues, J. C. Bortolini, A. C. M. Paula, G. A. Moresco, L. M. Reis, B. F. Zanco & S. Train, 2014. First record of the occurrence of Ceratium furcoides (Levander) Langhans (Dinophyceae) in the Upper Paraná River Floodplain (PR/MS), Brazil. Brazilian Journal of Biology 74: 235–236.CrossRefGoogle Scholar
  26. Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.CrossRefGoogle Scholar
  27. Kruk, C., V. L. M. Huszar, E. H. M. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  28. Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hemández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62: 1681–1692.CrossRefGoogle Scholar
  29. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Hold, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  30. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  31. Lemke, M. J., S. F. Paver, K. E. Dungey, L. F. M. Velho, A. D. Kent, L. C. Rodrigues, D. M. Kellerhals & M. Randle, 2017. Diversity and succession of pelagic microorganism communities in a newly restored Illinois River floodplain lake. Hydrobiologia 804: 35–58.CrossRefGoogle Scholar
  32. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.CrossRefGoogle Scholar
  33. Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.CrossRefGoogle Scholar
  34. Lopes, P. M., A. Caliman, L. S. Carneiro, L. M. Bini, F. A. Esteves, V. Farjalla & R. L. Bozelli, 2011. Concordance among assemblages of up land Amazonian lakes and the structuring role of spatial and environmental factors. Ecological Indicators 11: 1171–1176.CrossRefGoogle Scholar
  35. Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  36. Machado, K. B., P. P. Borges, F. M. Carneiro, J. F. Santana, L. C. G. Vieira, V. L. M. Huszar & J. C. Nabout, 2015. Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia 743: 255–267.CrossRefGoogle Scholar
  37. Machado, K. B., F. B. Teresa, L. C. G. Vieira, V. L. M. Huszar & J. C. Nabout, 2016. Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research 38: 1334–1346.CrossRefGoogle Scholar
  38. Matsumura-Tundisi, T., J. G. Tundisi, A. P. Luzia & R. M. Degani, 2010. Occurrence of Ceratium furcoides (Levander) Langhans 1925 bloom at the Billings Reservoir, São Paulo State, Brazil. Brazilian Journal of Biology 70: 825–829.CrossRefGoogle Scholar
  39. Moresco, G. A., J. C. Bortolini, J. D. Dias, A. Pineda, S. Jati & L. C. Rodrigues, 2017. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799: 203–215.CrossRefGoogle Scholar
  40. Mor, J. R., A. Ruhí, E. Tornés, H. Valcárcel, I. Muñoz & S. Sabater, 2018. Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment 625: 301–310.CrossRefGoogle Scholar
  41. Nabout, J. C., T. Siqueira, L. M. Bini & I. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35: 720–726.CrossRefGoogle Scholar
  42. Naselli-Flores, L. & R. Barone, 2018. Mixotrophic phytoplankton dynamics in a shallow Mediterranean water body: how to make a virtue out of necessity. Hydrobiologia.  https://doi.org/10.1007/s10750-018-3507-1.CrossRefGoogle Scholar
  43. Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764: 303–313.CrossRefGoogle Scholar
  44. Oliveira, H. S. B., A. N. Moura & M. K. Cordeiro-Araújo, 2011. First record of Ceratium Schrank, 1973 (Dinophyceae, Ceratiaceae) in freshwater ecosystems in the semiarid region of Brazil. Check List 7: 626–628.CrossRefGoogle Scholar
  45. Oksanen J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: Community Ecology Package. R package version 2.4-5. http://CRAN.R-project.org/package=vegan.
  46. Padial, A. A., F. Ceschin, S. A. J. Declerck, L. Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PlosOne 9: 1–8.CrossRefGoogle Scholar
  47. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  48. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefGoogle Scholar
  49. Peter, K. H. & U. Sommer, 2015. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecology and Evolution 5: 1011–1024.CrossRefGoogle Scholar
  50. R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.
  51. Rangel, L. M., M. C. S. Soares, R. Paiva & L. H. S. Silva, 2016. Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecological Indicators 64: 217–227.CrossRefGoogle Scholar
  52. Reynolds, C. S., 1988. Functional morphology and adaptative strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reprodutive Strategies of Freshwater Phytoplankton. Univ. Press, Cambridge.Google Scholar
  53. Reynolds, C. S., 1997. Vegetation Process in the Pelagic: A Model for Ecosystem Theory. Ecology Institute Oldendorf/Luhe, Germany.Google Scholar
  54. Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  55. Rodrigues, L. C., B. M. Pivato, L. C. G. Vieira, V. M. Bovo-Scomparin, J. C. Bortolini, A. Pineda & S. Train, 2018. Use of phytoplankton functional groups as a model of spatial and temporal patterns in reservoirs: a case study in a reservoir of central Brazil. Hydrobiologia 805: 147–161.CrossRefGoogle Scholar
  56. Rudman, S. M., M. Kreitzman, K. M. A. Chan & D. Schluter, 2017. Ecosystem services: rapid evolution and the provision of ecosystem services. Trends in Ecology & Evolution 32: 403–415.CrossRefGoogle Scholar
  57. Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.CrossRefGoogle Scholar
  58. Santos-Wisniewski, M. J., L. C. Silva, I. C. Leone, R. Laudares-Silva & O. Rocha, 2007. First record of the occurrence of Ceratium furcoides (Levander) Langhans 1925, an invasive species in the hydroelectricity power plant Furnas Reservoir, MG, Brazil. Brazilian Journal of Biology 67: 791–793.CrossRefGoogle Scholar
  59. Santos, J. B. O., L. H. S. Silva, C. W. C. Branco & V. L. M. Huszar, 2016. The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs. Hydrobiologia 764: 171–186.CrossRefGoogle Scholar
  60. Sema—Secretaria do Meio Ambiente, 2010. Bacias hidrográficas do Paraná. Curitiba. 139.Google Scholar
  61. Soininen, J., J. Heino & J. Wang, 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27: 96–109.CrossRefGoogle Scholar
  62. Souza, D. G., N. C. Bueno, J. C. Bortolini, L. C. Rodrigues, V. M. Bovo-Scomparin & G. M. S. Franco, 2016. Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779: 47–57.CrossRefGoogle Scholar
  63. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  64. Tonkin, J. D., F. Altermatt, D. S. Finn, J. Heino, J. D. Oldens, S. U. Pauls & D. A. Lytle, 2018. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshwater Biology 63: 141–163.CrossRefGoogle Scholar
  65. Udovič, M. G., A. Cvetkoska, P. Zŭtinić, S. Bosak, I. Stanković, I. Špoljarić, G. Mršić, K. K. Borojević, A. Ćukurin & A. Plenković-Moraj, 2017. Defining centric diatoms of most relevant phytoplankton functional groups in deep karst lakes. Hydrobiologia 788: 169–191.CrossRefGoogle Scholar
  66. Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodic. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  67. Vilmi, A., K. T. Tolonen, S. M. Karjalainen & J. Heino, 2017. Metacommunity structuring in a highly-connected aquatic system: effects of dispersal, abiotic environment and grazing pressure on microalgal guilds. Hydrobiologia 790: 125–140.CrossRefGoogle Scholar
  68. Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept in lotic ecosystems. In Fontaine, T. D. & S. M. Barthel (eds), Dynamic of Lotic Ecosystems. Ann Arbor Science Publishers, Michigan: 347–356.Google Scholar
  69. Wojciechowski, J., J. Heino, L. M. Bini & A. A. Padial, 2017. The strength of species sorting of phytoplankton communities is temporally variable in subtropical reservoirs. Hydrobiologia 800: 31–43.CrossRefGoogle Scholar
  70. Xiao, L. J., Y. Zhu, Y. Yang, O. Lin, B. P. Han & J. Padisák, 2018. Species-based classification reveals spatial processes of phytoplankton meta-communities better than functional group approaches: a case study from three freshwater lake regions in China. Hydrobiologia 811: 313–324.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jascieli Carla Bortolini
    • 1
    Email author
  • Pedro Rogério Leandro da Silva
    • 2
  • Gilmar Baumgartner
    • 3
  • Norma Catarina Bueno
    • 4
  1. 1.Departamento de Botânica, Instituto de Ciências Biológicas (ICB)Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto Neotropical de Pesquisas Ambientais (INEO)ToledoBrazil
  3. 3.Universidade Estadual do Oeste do Paraná, Grupo de Pesquisas em Recursos Pesqueiros e Limnologia (GERPEL)ToledoBrazil
  4. 4.Programa de Pós-graduação em Conservação e Manejo de Recursos NaturaisUniversidade Estadual do Oeste do ParanáCascavelBrazil

Personalised recommendations