Advertisement

Effects of lake restoration on breeding abundance of globally declining common pochard (Aythya ferina L.)

  • Anthony D. Fox
  • Thorsten J. S. Balsby
  • Hans E. Jørgensen
  • Torben L. Lauridsen
  • Erik Jeppesen
  • Martin Søndergaard
  • Karsten Fugl
  • Palle Myssen
  • Preben Clausen
Primary Research Paper

Abstract

Common pochard Aythya ferina are rapidly declining globally, partly due to water quality change at breeding habitats. Lake restoration at two southern Danish lakes (external nutrient loading reduction, bream Abramis brama and roach Rutilus rutilus removal and stocking of pike Esox lucius) improved water clarity and submerged macrophyte cover. Nesting pochard on one lake increased from 2.3 females per annum pre-treatment to 13.9 afterwards and from 22.7 females to 99.6 post-treatment at a second. Numbers fell from 27.7 to 11.3 at a third untreated lake with consistently high water clarity, but which was colonised and became dominated by holly-leaved naiad Najas marina, which provides no food resources for breeding pochard. Linear modelling (controlling for serial autocorrelation) showed statistically significant effects of annual summer measurements of suspended solids (negative) and Secchi depth (positive) on pochard abundance at both restored lakes and chlorophyll (negative) at one of those lakes, but no effects at the third. Breeding pochard numbers also correlated positively with submerged macrophyte cover at one restored lake with adequate data. Results support the hypothesis that lake restoration to improve water quality enhances conditions for locally breeding pochard, as long as restored conditions secure appropriate submerged macrophyte communities for nesting pochard.

Keywords

Abramis brama Common pochard Lake restoration Rutilus rutilus Reduced suspended solids Submerged macrophytes 

Notes

Acknowledgements

Thanks to the Aage V. Jensens Naturfond for financial support to analyse these data. EJ, TLL and MS were supported by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme and AU Centre for Water Technology (watec.au.dk). Thanks to Thomas Bregnballe and two anonymous referees for their help with this manuscript.

References

  1. Andersson, G. & L. Nilsson, 1999. Autumn waterfowl abundance in Lake Ringsjön, 1968–1996. Hydrobiologia 404: 41–51.CrossRefGoogle Scholar
  2. BirdLife International, 2015a. European Red List of birds. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  3. BirdLife International, 2015b. Aythya ferina (Common Pochard)European Red List Status. Accessible at: http://www.birdlife.org/datazone/userfiles/file/Species/erlob/summarypdfs/22680358_aythya_ferina.pdf (last accessed 27 June 2016).
  4. Boll, T., D. Balayla, F. Ø. Andersen & E. Jeppesen, 2012. Can artificial plant beds be used to enhance macroinvertebrate food resources for perch (Perca fluviatilis L.) during the initial phase of lake restoration by cyprinid removal? Hydrobiologia 679: 175–186.CrossRefGoogle Scholar
  5. Cramp, S. & K. E. L. Simmons, 1977. Handbook of the birds of Europe, the Middle East and North Africa (the Birds of the Western Palearctic); Vol. 1, Ostrich to Ducks. Oxford University Press, Oxford.Google Scholar
  6. Field, A. P., 2009. Discovering Statistics Using SPSS: and Sex and Drugs and Rock ‘n’ Roll, 3rd ed. Sage, London.Google Scholar
  7. Fox, A. D., A. Caizergues, M. V. Banik, M. Dvorak, M. Ellermaa, B. Folliot, A. J. Green, C. Grüneberg, M. Guillemain, A. Håland, M. Hornman, V. Keller, A. I. Koshelev, V. A. Kostyushin, A. Kozulin, Ł. Ławicki, L. Luigujõe, C. Müller, P. Musil, Z. Musilová, L. Nilsson, A. Mischenko, H. Pöysä, M. Šćiban, J. Sjeničić, A. Stīpniece, S. Švažas & J. Wahl, 2016. Recent changes in the abundance of breeding common pochard Aythya ferina in Europe. Wildfowl 66: 22–40.Google Scholar
  8. González Sagrario, M. A., E. Jeppesen, J. Gomà, M. Søndergaard, J. P. Jensen, T. L. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  9. Gross, E. M., D. Erhard & E. Iványi, 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia 506–509: 583–589.CrossRefGoogle Scholar
  10. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  11. Hansson, L.-A., A. Nicolle, C. Brönmark, A. Hargeby, Å. Lindström & G. Andersson, 2010. Waterfowl, macrophytes, and the clear water state of shallow lakes. Hydrobiologia 646: 101–109.CrossRefGoogle Scholar
  12. Hilt, S., S. Brothers, E. Jeppesen, A. J. Veraart & S. Kosten, 2017. Translating regime shifts in shallow lakes into changes in ecosystem functions. Bioscience 67: 928–936.CrossRefGoogle Scholar
  13. Hirschfeld, A. & A. Heyd, 2005. Mortality of migratory birds caused by hunting in Europe: bag statistics and proposals for the conservation of birds and animal welfare. Berichte zum Vogelschutz 42: 47–74.Google Scholar
  14. Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noordhuis, M. van den Berg, W. Joosee & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10: 4–16.CrossRefGoogle Scholar
  15. IUCN, 2015. The IUCN Red List of Threatened Species, Version 2015-4. Available at: www.iucnredlist.org (last accessed 27 June 2016).
  16. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York.Google Scholar
  17. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. H. R. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  18. Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–487.CrossRefGoogle Scholar
  19. Koskimies, P. & R. A. Väisänen, 1991. Monitoring Bird Populations: A Manual of Methods Applied in Finland. Zoological Museum, Finnish Museum of Natural History, University of Helsinki. Accessible at https://www.luomus.fi/sites/default/files/files/04b_waterfowl_round_counts.pdf.
  20. Liboriussen, L., M. Søndergaard & E. Jeppesen (eds), 2007a. Søresuarering i Danmark. Del I: Tværgående analyser. Technical Report 636. Danmarks Mijøundersøgelser, Aarhus Universitet.Google Scholar
  21. Liboriussen, L., M. Søndergaard & E. Jeppesen (eds), 2007b. Søresuarering i Danmark. Del II: Eksempelsamling. Technical Report 636. Danmarks Mijøundersøgelser, Aarhus Universitet.Google Scholar
  22. Marklund, O., I. Blindow & A. Hargeby, 2001. Distribution and diel migration of macroinvertebrates within dense submerged vegetation. Freshwater Biology 46: 913–924.CrossRefGoogle Scholar
  23. Mazej, Z. & M. Germ, 2008. Competitive advantages of Najas marina L. in a process of littoral colonization in the lake Velenjsko jezero (Slovenia). Acta Biologica Slovenica 51: 13–20.Google Scholar
  24. MESN, 1995. EF-fuglebeskyttelsesområder og Ramsarområder: kort og områderbeskrivelser. Miljø- og Energiministeriet Skov og Naturstyrelsen, København.Google Scholar
  25. Milberg, P., L. Gezelius, I. Blindow, L. Nilsson & T. Tyrberg, 2002. Submerged vegetation and the variation in the autumn waterfowl community at Lake Takern, southern Sweden. Ornis Fennica 79: 72–81.Google Scholar
  26. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200: 367–377.CrossRefGoogle Scholar
  27. Nagy, S., S. Flink & T. Langendoen, 2014. Waterbird trends 1988–2012 Results of trend analyses of data from the International Waterbird Census in the African-Eurasian Flyway. Report by Wetlands International, Ede, the Netherlands. Accessible at: http://www.wetlands.org/Portals/0/TRIM%20Report%202014_10_05.pdf (last accessed 29 May 2015).
  28. Noordhuis, R., D. van der Molen & M. van den Berg, 2002. Response of herbivorous water-birds to the return of Chara in Lake Valuwemeer, The Netherlands. Aquatic Botany 72: 349–367.CrossRefGoogle Scholar
  29. Orbicon, 2006. Stor najade i Røgbølle Sø og dens indflydelse på de biologiske forhold 2006. Report by Orbicon, Åbyhøj, Denmark to Storstrøm County.Google Scholar
  30. Rip, W. J., N. Rawee & A. de Jong, 2006. Alteration between clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds. Aquatic Botany 85: 184–190.CrossRefGoogle Scholar
  31. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  32. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions – large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.CrossRefGoogle Scholar
  33. Skov, C. & P. A. Nilsson, 2007. Evaluating stocking of YOY pike Esox lucius as a tool in the restoration of shallow lakes. Freshwater Biology 52: 1834–1845.CrossRefGoogle Scholar
  34. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus on shallow lakes. Hydrobiologia 506: 135–145.CrossRefGoogle Scholar
  35. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Water Framework Directive: ecological classification of Danish lakes. Journal of Applied Ecology 42: 616–629.CrossRefGoogle Scholar
  36. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration in Denmark and the Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  37. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short and Long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  38. Storstrøms Amt, 1993. Bundvegetationen i Maribo Søndersø og Røgbølle Sø 1992. Report from Bio/consult as.Google Scholar
  39. Storstrøms Amt, 1997. Vegetationsundersøgelser i Røgbølle Sø 1996. Report from Bio/consult a/s, Åbyhøj, Denmark.Google Scholar
  40. Storstrøms Amt, 1998. Vegetationen i Røgbølle Sø 1997. Report from Bio/consult a/s, Åbyhøj, Denmark.Google Scholar
  41. Storstrøms Amt, 1999. Vegetationen i Maribo Søndersø 1998. Report from Bio/consult a/s, Åbyhøj, Denmark.Google Scholar
  42. Storstrøms Amt, 2004. Vegetationen i Maribo Søndersø 2003. Report from Bio/consult a/s, Åbyhøj, Denmark.Google Scholar
  43. Storstrøms Amt, 2005. Vegetationen i Maribo Søndersø 2004. Report from Bio/consult a/s, Åbyhøj, Denmark.Google Scholar
  44. Svendsen, L. M., L. van der Bijl, S. Boutrup & B. Norup (eds), 2005. NOVANA. National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments Programme Description, Part 2. NERI Technical Report No. 537. National Environmental Research Institute, Aarhus, Denmark. http://www.dmu.dk:80/NR/rdonlyres/5EC5E735-724E-4769-A560-D53613C89536/0/FR537_www_S_H.pdf.
  45. van den Berg, M., M. Scheffer, H. Coops & J. Simons, 1998. The role of Characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34: 750–756.CrossRefGoogle Scholar
  46. van der Molen, D. T. & R. Portielje, 1999. Multi-lake studies in the Netherlands: trends in eutrophication. Hydrobiologia 409: 359–365.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anthony D. Fox
    • 1
  • Thorsten J. S. Balsby
    • 1
  • Hans E. Jørgensen
    • 3
  • Torben L. Lauridsen
    • 2
  • Erik Jeppesen
    • 2
  • Martin Søndergaard
    • 2
  • Karsten Fugl
    • 4
  • Palle Myssen
    • 5
  • Preben Clausen
    • 1
  1. 1.Department of BioscienceAarhus University, KaløRøndeDenmark
  2. 2.Department of BioscienceAarhus UniversitySilkeborgDenmark
  3. 3.FrederikshusHaslevDenmark
  4. 4.MiljøstyrelsenNykøbing FDenmark
  5. 5.Centre for Plan og MiljøNæstvedDenmark

Personalised recommendations