, Volume 829, Issue 1, pp 323–340 | Cite as

Relative importance of Conservation Reserve Programs to aquatic insect biodiversity in an agricultural watershed in the Midwest, USA

  • Eric J. SouthEmail author
  • R. Edward DeWalt
  • Yong Cao
Primary Research Paper


The Conservation Reserve Program (CRP) and the Conservation Reserve Enhancement Program (CREP) in the USA offer farmers government financial incentives to take erosive agricultural lands out of production. Many conservation practices are used along streams to improve habitat for stream biota. However, the ecological benefits of these programs to streams are yet to be demonstrated. This study investigates the responses of communities of three sensitive aquatic insect orders (Ephemeroptera, Plecoptera, and Trichoptera or EPT) to CRP and CREP practices in the Kaskaskia River basin, a predominantly agricultural watershed in Illinois, USA. A total of 10,373 EPT specimens were examined from 84 sites across the basin during 2013–2015. Nine environmental variables were used to account for variance in EPT taxonomic diversity, and sets of best regression models were selected based on Akaike information criterion (AICc). AICc importance values and hierarchical variance partitioning revealed three important variables associated with EPT taxa richness: link (number of first order tributaries), soil permeability, and urban land. Two important variables were associated with Shannon and Simpson diversity measures: link and dissolved oxygen. The percentage of CRP/CREP land in the watershed was less important, suggesting that this mosaic of conservation practices as currently implemented in the basin may not affect EPT taxonomic diversity.


Conservation practices Macroinvertebrates Illinois streams EPT taxa Bioassessment 



We thank Brian Metzke (INHS, Springfield, Illinois) for supplying GIS data, Leon Hinz (INHS, Springfield) for suggestions on potential analyses, Allison Gardner (University of Maine, Orono) for initial statistical considerations, and James Woolbright (engineering consultant, Atlanta, Georgia) for computational support. This project was funded by Grant RC13CREP01 from the Illinois Department of Natural Resources to Hinz, Cao, and DeWalt.

Supplementary material

10750_2018_3842_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 11 kb)
10750_2018_3842_MOESM2_ESM.xlsx (23 kb)
Supplementary material 2 (XLSX 23 kb)
10750_2018_3842_MOESM3_ESM.xlsx (18 kb)
Supplementary material 3 (XLSX 17 kb)
10750_2018_3842_MOESM4_ESM.xlsx (13 kb)
Supplementary material 4 (XLSX 12 kb)
10750_2018_3842_MOESM5_ESM.xlsx (49 kb)
Supplementary material 5 (XLSX 48 kb)
10750_2018_3842_MOESM6_ESM.xlsx (12 kb)
Supplementary material 6 (XLSX 11 kb)
10750_2018_3842_MOESM7_ESM.xlsx (12 kb)
Supplementary material 7 (XLSX 11 kb)
10750_2018_3842_MOESM8_ESM.tif (613 kb)
Fig. S1 Standardized model average coefficients (β) with 95% confidence intervals for predictors in top 15 AICc-ranked regression models explaining Shannon diversity variability in Kaskaskia River basin streams sampled 2013–2015. CRP/CREP is the proportion of Conservation Reserve and Conservation Reserve Enhancement Program land at the local watershed level. Supplementary material 8 (TIFF 612 kb)
10750_2018_3842_MOESM9_ESM.tif (575 kb)
Fig. S2 Standardized model average coefficients (β) with 95% confidence intervals for predictors in top 18 AICc-ranked regression models explaining Simpson diversity variability in Kaskaskia River basin streams sampled 2013–2015. CRP/CREP is the proportion of Conservation Reserve and Conservation Reserve Enhancement Program land at the local watershed level. Supplementary material 9 (TIFF 575 kb)


  1. Abu-Zreig, M., R. P. Rudra, M. N. Lalonde, H. R. Whiteley & N. K. Kaushik, 2004. Experimental investigation of runoff reduction and sediment removal by vegetated filter strips. Hydrological Processes 18: 2029–2037.Google Scholar
  2. Alexander, R. B., R. A. Smith, G. E. Schwarz, E. W. Boyer, J. V. Nolan & J. W. Brakebill, 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science and Technology 42: 822–830.PubMedGoogle Scholar
  3. Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.Google Scholar
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and fish, 2nd ed. EPA 841-B-99-002. US EPA, Office of Water, Washington, DC.Google Scholar
  5. Barton, D. R. & M. E. D. Farmer, 1997. The effects of conservation tillage practices on benthic invertebrate communities in headwater streams in southwestern Ontario, Canada. Environmental Pollution 96: 207–215.PubMedGoogle Scholar
  6. Barton, K., 2015. MuMIn: multi-model inference. R package version 1.15.1. R Project for Statistical Computing, Vienna.Google Scholar
  7. Baylis, K., S. Peplow, G. Rausser & L. Simon, 2008. Agri-environmental policies in the EU and United States: a comparison. Ecological Economics 65: 753–764.Google Scholar
  8. Benoy, G. A., A. B. Sutherland, J. M. Culp & R. B. Brua, 2012. Physical and ecological thresholds for deposited sediments in streams in agricultural landscapes. Journal of Environmental Quality 41: 31–40.PubMedGoogle Scholar
  9. Best, L. B., H. Campa, K. E. Kemp, R. J. Robel, M. R. Ryan, J. A. Savidge, H. P. Weeks & S. R. Winterstein, 1997. Bird abundance and nesting in CRP fields and cropland in the Midwest: a regional approach. Wildlife Society Bulletin 25: 864–877.Google Scholar
  10. Blann, K. L., J. L. Anderson, G. R. Sands & B. Vondracek, 2009. Effects of agricultural drainage on aquatic ecosystems: a review. Critical Reviews in Environmental Science and Technology 39: 909–1001.Google Scholar
  11. Borin, M., M. Vianello, F. Morari & G. Zanin, 2005. Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agriculture, Ecosystems and Environment 105: 101–114.Google Scholar
  12. Boyer, K. L., D. R. Berg & S. V. Gregory, 2003. Riparian management for wood in rivers. In Gregory, S. V., K. L. Boyer & A. M. Gurnell (eds), The Ecology and Management of Wood in World Rivers. American Fisheries Society, Bethesda, MA: 407–420.Google Scholar
  13. Brenden, T. O., R. D. Clark, A. R. Cooper, P. W. Seelbach, L. Wang, S. S. Aichele, E. G. Bissell & J. S. Stewart, 2006. A GIS framework for collecting, managing, and analyzing multiscale landscape variables across large regions for river conservation and management. American Fisheries Society Symposium 48: 49–74.Google Scholar
  14. Budescu, D. V., 1993. Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin 114: 542–551.Google Scholar
  15. Burks, B. D., 1953. The mayflies, or Ephemeroptera, of Illinois. Bulletin of the Illinois Natural History Survey 26: 1–216.Google Scholar
  16. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  17. Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Research 33: 261–304.Google Scholar
  18. Cao, Y., C. P. Hawkins, J. Olsen & M. A. Kosterman, 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society 26: 566–585.Google Scholar
  19. Cao, Y., R. E. DeWalt, J. L. Robinson, T. Tweddale, L. Hinz & M. Pessino, 2013. Using Maxent to model the historic distributions of stonefly species in Illinois streams: the effects of regularization and threshold selections. Ecological Modelling 259: 30–39.Google Scholar
  20. Cao, Y., L. Hinz, B. Metzke, J. Stein & A. Holtrop, 2016. Modeling and mapping fish abundance across wadeable streams of Illinois, USA, based on landscape-level environmental variables. Canadian Journal of Fisheries and Aquatic Sciences 73: 1031–1046.Google Scholar
  21. Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.Google Scholar
  22. Carter, J. L. & V. H. Resh, 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. Journal of the North American Benthological Society 20: 658–682.Google Scholar
  23. Chambers, P. A., D. J. McGoldrick, R. B. Brua, C. Vis, J. M. Culp & G. A. Benoy, 2012. Development of environmental thresholds for nitrogen and phosphorus in streams. Journal of Environmental Quality 41: 7–20.PubMedGoogle Scholar
  24. Chevan, A. & M. Sutherland, 1991. Hierarchical partitioning. American Statistician 45: 90–96.Google Scholar
  25. Chiang, L. C., Y. Yuan, M. Mehaffey, M. Jackson & I. Chaubey, 2012. Assessing SWAT’s performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrological Processes 28: 676–687.Google Scholar
  26. Christensen, V. G., K. E. Lee, C. A. Sanocki, E. H. Mohring & R. L. Kiesling, 2009. Water-Quality and biological characteristics and responses to agricultural land retirement in three streams of the Minnesota River Basin, water years 2006–2008: U.S. Geological Survey, Scientific Investigations Report 2009–5215, Reston, VA.Google Scholar
  27. Cuffney, T. F., M. D. Bilger & A. M. Haigler, 2007. Ambiguous taxa: effects on the characterization and interpretation of invertebrate assemblages. Journal of the North American Benthological Society 26: 286–307.Google Scholar
  28. DeWalt, R. E. & S. A. Grubbs, 2011. Updates to the stonefly fauna of Illinois and Indiana. Illiesia 7: 31–50.Google Scholar
  29. DeWalt, R. E., C. Favret & D. W. Webb, 2005. Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Annals of the Entomological Society of America 98: 941–950.Google Scholar
  30. DeWalt, R. E., M. D. Maehr, U. Neu-Becker & G. Stueber, 2018. Plecoptera Species File Online. Version 5.0/5.0. Accessed 23 Aug 2018.
  31. Engel, S., S. Pagiola & S. Wunder, 2008. Designing payments for environmental services in theory and practice: an overview of the issues. Ecological Economics 65: 663–674.Google Scholar
  32. Erman, D. C. & N. A. Erman, 1984. The response of stream macroinvertebrates to substrate size and heterogeneity. Hydrobiologia 108: 75–82.Google Scholar
  33. Fischer, J. R., M. C. Quist, S. L. Wigen, A. J. Schaefer, T. W. Stewart & T. M. Isenhart, 2010. Assemblage and population-level responses of stream fish to riparian buffers at multiple spatial scales. Transactions of the American Fisheries Society 139: 185–200.Google Scholar
  34. Fore, J. D., S. P. Sowa, D. L. Galat & D. D. Diamond, 2017. Assessing effects of sediment-reducing agricultural conservation practices on stream fishes. Journal of Soil and Water Conservation 72: 326–342.Google Scholar
  35. Frainer, A., L. E. Polvi, R. Jansson & B. G. McKie, 2018. Enhanced ecosystem functioning following stream restoration: the roles of habitat heterogeneity and invertebrate species traits. Journal of Applied Ecology 55: 377–385.Google Scholar
  36. Frison, T. H., 1935. The stoneflies, or Plecoptera, of Illinois. Illinois Natural History Survey Bulletin 20: 281–467.Google Scholar
  37. Gabel, K. W., J. D. Wehr & K. M. Truhn, 2012. Assessment of the effectiveness of best management practices for streams draining agricultural landscapes using diatoms and macroinvertebrates. Hydrobiologia 680: 247–264.Google Scholar
  38. Greenwood, M. J., J. S. Harding, D. K. Niyogi & A. R. McIntosh, 2012. Improving the effectiveness of riparian management for aquatic invertebrates in a degraded agricultural landscape: stream size and land-use legacies. Journal of Applied Ecology 49: 213–222.Google Scholar
  39. Grimley, D. A. & N. D. Webb, 2010. Surficial geology of Red Bud Quadrangle, Randolph, Monroe, and St. Clair Counties, Illinois: Illinois State Geological Survey, Illinois Geologic Quadrangle Map, IGQ Red Bud-SG, 2 sheets, 1:24,000; report.Google Scholar
  40. Grubaugh, J. W., J. B. Wallace & E. S. Houston, 1996. Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Canadian Journal of Fisheries and Aquatic Sciences 53: 896–909.Google Scholar
  41. Hagen, C. A., D. C. Pavlacky, K. Adachi, F. E. Hornsby, T. J. Rintz & L. L. McDonald, 2016. Multiscale occupancy modeling provides insights into range-wide conservation needs of lesser prairie-chicken (Tympanuchus pallidicinctus). The Condor 118: 597–612.Google Scholar
  42. Haroldson, K. J., R. O. Kimmel, M. R. Riggs & A. H. Berner, 2006. Association of ring-necked pheasant, gray partridge, and meadowlark abundance to Conservation Reserve Program grasslands. Journal of Wildlife Management 70: 1276–1284.Google Scholar
  43. Hawkins, C. P. & M. R. Vinson, 2000. Weak correspondence between landscape classifications and stream invertebrate communities: implications for bioassessment. Journal of the North American Benthological Society 19: 501–517.Google Scholar
  44. Hawkins, C. P., Y. Cao & B. Roper, 2010. Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–1085.Google Scholar
  45. Hellerstein, D. M., 2017. The US Conservation Reserve Program: the evolution of an enrollment mechanism. Land Use Policy 63: 601–610.Google Scholar
  46. Herkert, J. R., 2007. Conservation Reserve Program benefits on Henslow’s sparrows within the United States. Journal of Wildlife Management 71: 2749–2751.Google Scholar
  47. Hill, J. M., J. F. Egan, G. E. Stauffer & D. R. Diefenbach, 2014. Habitat availability is a more plausible explanation than insecticide acute toxicity for U.S. grassland bird species declines. PLoS ONE 9: e98064.PubMedPubMedCentralGoogle Scholar
  48. Hitchcock, S. W., 1974. Guide to the insects of connecticut. Part VII. The Plecoptera or stoneflies of Connecticut. State Geological and Natural History Survey of Connecticut Bulletin 107: 1–262.Google Scholar
  49. Holmes, R., D. G. Armanini & A. G. Yates, 2016. Effects of best management practice on ecological condition: does location matter? Environmental Management 57: 1062–1076.PubMedGoogle Scholar
  50. Holtrop, A. M., D. Day, C. Dolan & J. Epifanio, 2005. Ecological classification of rivers for environmental assessment and management: stream attribution and model preparation. Illinois Natural History Survey, Center for Aquatic Ecology and Conservation Technical Report 2005/04.
  51. IDNR, 2001. Critical Trends in Illinois Ecosystems. Illinois Department of Natural Resources Office of Realty and Environmental Planning. Springfield, ILGoogle Scholar
  52. IEPA, 2010. Macroinvertebrate-Index of Biotic Integrity (mIBI) Tolerance List and Functional Group Classification, January 2010.Google Scholar
  53. IEPA, 2012. Lower Kaskaskia River Watershed TMDL Report. Springfield, IL.Google Scholar
  54. Ice, G., 2004. History of innovative best management practice development and its role in addressing water quality limited waterbodies. Journal of Environmental Engineering 130: 684–689.Google Scholar
  55. Jacobsen, D., 2008. Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia 154: 795–807.PubMedGoogle Scholar
  56. Jost, L., 2006. Entropy and diversity. Oikos 113: 363–375.Google Scholar
  57. Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427–2439.PubMedGoogle Scholar
  58. Kantrud, H. A., 1993. Duck nest success on Conservation Reserve Program land in the prairie pothole region. Journal of Soil and Water Conservation 48: 238–242.Google Scholar
  59. Karr, J. R., L. A. Toth & D. R. Dudley, 1985. Fish communities of midwestern rivers: a history of degradation. BioScience 35: 90–95.Google Scholar
  60. Kleijn, D. & W. J. Sutherland, 2003. How effective are European agri-environment schemes in conserving and promoting biodiversity? Journal of Applied Ecology 40: 947–969.Google Scholar
  61. Knight, S. S. & K. L. Boyer, 2007. Effects of conservation practices on aquatic habitats and fauna. Fish and wildlife response to farm bill conservation practices. The Wildlife Society Technical Review 7: 85–103.Google Scholar
  62. Krutz, L. J., S. A. Senseman, R. M. Zablotowicz & M. A. Matocha, 2005. Reducing herbicide runoff from agricultural fields with vegetative filter strips: a review. Weed Science 53: 353–367.Google Scholar
  63. Lau, J. K., T. E. Lauer & M. L. Weinman, 2006. Impacts of channelization on stream habitats and associated fish communities in east central Indiana. American Midland Naturalist 156: 319–330.Google Scholar
  64. Lenat, D. R., 1984. Agriculture and stream water quality: a biological evaluation of erosion control procedures. Environmental Management 8: 333–343.Google Scholar
  65. Lenat, D. R., 1988. Water quality assessment using a qualitative collection method for benthic macroinvertebrates. Journal of North American Benthological Society 7: 222–233.Google Scholar
  66. Lenat, D. R. & V. H. Resh, 2001. Taxonomy and stream ecology: the benefits of genus-and species-level identifications. Journal of the North American Benthological Society 20: 287–298.Google Scholar
  67. Liu, Y., B. A. Engel, D. C. Flanagan, M. W. Gitau, S. K. McMillan & I. Chaubey, 2017. A review on effectiveness of best management practices in improving hydrology and water quality: needs and opportunities. Science of the Total Environment 601–602: 580–593.PubMedGoogle Scholar
  68. Mac Nally, R., 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between-and reconciliation of -’predictive’ and ‘explanatory’ models. Biodiversity and Conservation 9: 655–671.Google Scholar
  69. Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.Google Scholar
  70. Marshall, D. W., A. H. Fayram, J. C. Panuska, J. Baumann & J. Hennessey, 2008. Positive effects of agricultural land use changes on coldwater fish communities in southwest Wisconsin streams. North American Journal of Fisheries Management 28: 944–953.Google Scholar
  71. Mattingly, R. L., E. E. Herricks & D. M. Johnston, 1993. Channelization and levee construction of Illinois: review and implications for management. Environmental Management 17: 781–795.Google Scholar
  72. Mayfly Central 2018. Mayfly Central. Accessed 12 June 2018
  73. Mazerolle, M. J., 2015. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.0-3. R Project for Statistical Computing, Vienna.Google Scholar
  74. Meals, D. W., S. A. Dressing & T. E. Davenport, 2010. Lag time in water quality response to best management practices: a review. Journal of Environmental Quality 39: 85–96.PubMedGoogle Scholar
  75. Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall/Hunt, Dubuque.Google Scholar
  76. Minshall, G. W., R. C. Petersen & C. F. Nimz, 1985. Species richness in streams of different size from the same drainage basin. The American Naturalist 125: 16–38.Google Scholar
  77. Morse, J. C., 2018. Trichoptera World Checklist. Accessed 12 June 2018
  78. Nerbonne, B. A. & B. Vondracek, 2001. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environmental Management 28: 87–99.PubMedGoogle Scholar
  79. Nimon, K., F. Oswald & J. K. Roberts, 2013. yhat: Interpreting Regression Effects. R Package Version 2.0-0. R Project for Statistical Computing, Vienna.Google Scholar
  80. Olea, P. P., P. Mateo-Tomás & A. de Frutos, 2010. Estimating and modelling bias of the hierarchical partitioning public-domain software: implications in environmental management and conservation. PLoS ONE 5(7): e11698.PubMedPubMedCentralGoogle Scholar
  81. Owens, P. N. & D. E. Walling, 2002. Changes in sediment sources and floodplain deposition rates in the catchment of the River Tweed, Scotland, over the last 100 years: the impact of climate and land use change. Earth Surface Processes and Landforms 27: 403–423.Google Scholar
  82. Paller, M. H., W. L. Specht & S. A. Dyer, 2006. Effects of stream size on taxa richness and other commonly used benthic bioassessment metrics. Hydrobiologia 568: 309–316.Google Scholar
  83. Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology Evolution, and Systematics 32: 333–365.Google Scholar
  84. Petersen, I., Z. Masters, A. G. Hildrew & S. J. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41: 934–950.Google Scholar
  85. Petersen, I., Z. Masters, S. J. Ormerod & A. G. Hildrew, 2006. Sex ratio and maturity indicate the local dispersal and mortality of adult stoneflies. Freshwater Biology 51: 1543–1551.Google Scholar
  86. Pont, D., B. Hugueny, U. Beier, D. Goffaux, A. Melcher, R. Noble, C. Rogers, N. Roset & S. Schmutz, 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish communities. Journal of Applied Ecology 43: 70–80.Google Scholar
  87. Poole, K. E. & J. A. Downing, 2004. Relationship of declining mussel biodiversity to stream-reach and watershed characteristics in an agricultural landscape. Journal of the North American Benthological Society 23: 114–125.Google Scholar
  88. Poulton, B. C. & K. W. Stewart, 1991. The stoneflies of the Ozarks and Ouachita Mountains (Plecoptera). Memoirs of the American Entomological Society 38: 1–116.Google Scholar
  89. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, New York.Google Scholar
  90. Rabotyagov, S. S., T. D. Campbell, M. White, J. G. Arnold, J. Atwood, M. L. Norfleet, C. L. Kling, P. W. Gassman, A. Valcu, J. Richardson, R. E. Turner & N. N. Rabalais, 2014. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proceedings of the National Academy of Sciences 111: 18530–18535.Google Scholar
  91. Randolph, R. P. & W. P. McCafferty, 1998. Diversity and distribution of the mayflies (Ephemeroptera) of Illinois, Indiana, Kentucky, Michigan, Ohio, and Wisconsin. Ohio Biological Survey Bulletin New Series 13: 1–188.Google Scholar
  92. Reichelderfer, K. & W. G. Boggess, 1988. Government decision making and program performance: the case for the Conservation Reserve Program. American Journal of Agricultural Economics 70: 1–11.Google Scholar
  93. Resh, V. H. & G. Grodhaus, 1983. Aquatic Insects in Urban Environments. In Frankie, G. W. & C. S. Koehler (eds), Urban Entomology: Interdisciplinary Perspectives. Praeger Publishers, New York: 247–276.Google Scholar
  94. Reynolds, R. E., T. L. Shaffer, R. W. Renner, W. E. Newton & B. D. J. Batt, 2001. Impact of the Conservation Reserve Program on duck recruitment in the U.S. prairie pothole region. Journal of Wildlife Management 65: 765–780.Google Scholar
  95. Ross, H. H., 1944. The caddisflies, or Trichoptera, of Illinois. Bulletin of the Illinois Natural History Survey 23: 1–326.Google Scholar
  96. Royer, T. V., M. B. David & L. E. Gentry, 2006. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River. Environmental Science and Technology 40: 4126–4131.PubMedGoogle Scholar
  97. Sangunett, B. M., 2005. Reference Conditions for Streams in the Grand Prairie Natural Division of Illinois. M. S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.Google Scholar
  98. Santhi, C., P. M. Allen, R. S. Muttiah, J. G. Arnold & P. Tuppad, 2008. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology 351: 139–153.Google Scholar
  99. Scherr, S. J. & J. A. McNeely, 2008. Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagricultural ‘ landscapes. Philosophical Transactions of the Royal Society of London B: Biological Sciences 363: 477–494.PubMedGoogle Scholar
  100. Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1: 103–113.Google Scholar
  101. Schwegman, J. E., M. Hutchison, G. Paulson, G. B. Fell, W. M. Shepherd & J. White, 1973. Comprehensive Plan for the Illinois Nature Preserves Commission: Part 2. The Natural Divisions of Illinois. Illinois Nature Preserves Commission, Rockford, IL.Google Scholar
  102. Shields, F. D., S. S. Knight & C. M. Cooper, 2000. Warmwater stream bank protection and fish habitat: a comparative study. Environmental Management 26: 317–328.PubMedGoogle Scholar
  103. Shrestha, S., J. Farrelly, M. Eggleton & Y. Chen, 2017. Effects of conservation wetlands on stream habitat, water quality and fish communities in agricultural watersheds of the lower Mississippi River Basin. Ecological Engineering 107: 99–109.Google Scholar
  104. Smiley, P. C., K. W. King & N. R. Fausey, 2011. Influence of herbaceous riparian buffers on physical habitat, water chemistry, and stream communities within channelized agricultural headwater streams. Ecological Engineering 37: 1314–1323.Google Scholar
  105. Smith, R. F., P. D. Venugopal, M. E. Baker & W. O. Lamp, 2015. Habitat filtering and adult dispersal determine the taxonomic composition of stream insects in an urbanizing landscape. Freshwater Biology 60: 1740–1754.Google Scholar
  106. Sode, A. & P. Wiberg-Larsen, 1993. Dispersal of adult Trichoptera at a Danish forest brook. Freshwater Biology 30: 439–446.Google Scholar
  107. Sowa, S. P., M. Herbert, S. Mysorekar, G. M. Annis, K. Hall, A. P. Nejadhashemi, S. A. Woznicki, L. Wang & P. J. Doran, 2017. How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers. Journal of Great Lakes Research 42: 1302–1321.Google Scholar
  108. State of Illinois, 2013. Illinois Conservation Reserve Enhancement Program 2013 Report. Illinois Department of Natural Resources, Springfield, IL.Google Scholar
  109. State of Illinois, 2015. Illinois Conservation Reserve Enhancement Program 2015 Report. Illinois Department of Natural Resources, Springfield, IL.Google Scholar
  110. Stuart, D. & S. Gillon, 2013. Scaling up to address new challenges to conservation on US farmland. Land Use Policy 31: 223–236.Google Scholar
  111. Stubbs, M., 2010. Environmental Quality Incentives Program (EQIP): status and issues. Congressional Research Report for Members and Committees of Congress R40197. USDA, Washington, DC. Accessed 16 May 2016.
  112. Stubbs, M., 2014. Conservation Reserve Program (CRP): status and issues. Congressional Research Report for Members and Committees of Congress R42783. USDA, Washington, DC. Accessed 17 May 2016.
  113. Stubbs, M., 2017. Agricultural conservation: a guide to programs. Congressional Research Report for Members and Committees of Congress R40763. USDA, Washington, DC. Accessed 24 June 2018.
  114. Sweeney, B. W. & J. D. Newbold, 2014. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association 50: 560–584.Google Scholar
  115. Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor & S. Polasky, 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677.PubMedGoogle Scholar
  116. Uchida, E., J. Xu & S. Rozelle, 2005. Grain for Green: cost-effectiveness and sustainability of China’s conservation set-aside program. Land Economics 81: 247–264.Google Scholar
  117. USDA, 2011. The environmental benefits of the Conservation Reserve Program, United States-2010. Accessed 10 April 2016.
  118. USDA, 2012. Assessment of the effects of conservation practices on cultivated cropland in the Upper Mississippi River Basin. Report prepared by the Conservation Effects Assessment Project (CEAP). Accessed 14 Jan 2018
  119. USDA, 2017. Conservation Reserve Program Statistics, CRP Contract and Summary Statistics-September 2017. Accessed 12 Jan 2018
  120. USEPA, 2000. Nutrient criteria technical guidance manual: rivers and streams. EPA-822-B-00-002. USEPA, Washington, DC.Google Scholar
  121. USEPA, 2007. Hypoxia in the northern Gulf of Mexico: an update by the EPA Science Advisory Board. EPA-SAB-08-004. USEPA, Washington, DC.Google Scholar
  122. Valentin, C., F. Agus, R. Alamban, A. Boosaner, J. P. Bricquet, V. Chaplot, T. de Guzman, A. de Rouw, J. L. Janeau, D. Orange, K. Phachomphonh, Do Duy Phai, P. Podwojewski, O. Ribolzi, N. Silvera, K. Subagyono, J. P. Thiébaux, Tran Duc Toan & T. Vadari, 2008. Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. Agriculture, Ecosystems and Environment 128: 225–238.Google Scholar
  123. Van Dijk, P. M., F. J. P. M. Kwaad & M. J. G. Klapwijk, 1996. Retention of water and sediment by grass strips. Hydrological Processes 10: 1069–1080.Google Scholar
  124. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.Google Scholar
  125. Walsh, C. & R. Mac Nally, 2013. hier.part: hierarchical partitioning. R package version 1.0-4. R Project for Statistical Computing, Vienna.Google Scholar
  126. Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723.Google Scholar
  127. Walsh, C. J., K. A. Waller, J. Gehling & R. Mac Nally, 2007. Riverine invertebrate communities are degraded more by catchment urbanisation than by riparian deforestation. Freshwater Biology 52: 574–587.Google Scholar
  128. Wang, L., J. Lyons & P. Kanehl, 2002. Effects of watershed best management practices on habitat and fish in Wisconsin streams. Journal of the American Water Resources Association 38: 663–680.Google Scholar
  129. Wang, L., P. W. Seelbach & J. Lyons, 2006. Effects of levels of human disturbance on the influence of catchment, riparian, and reach-scale factors on fish communities. American Fisheries Society Symposium 48: 199–219.Google Scholar
  130. Wiggers, R., 1997. Geology Underfoot in Illinois. Mountain Press Publishing, Missoula, Montana.Google Scholar
  131. Wu, Y. & J. Chen, 2012. Modeling of soil erosion and sediment transport in the East River Basin in southern China. Science of the Total Environment 441: 159–168.PubMedGoogle Scholar
  132. Yates, A. G., R. C. Bailey & J. A. Schwindt, 2007. Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia 583: 331–344.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignUSA

Personalised recommendations