, Volume 844, Issue 1, pp 163–172 | Cite as

The use of non-Brachionus plicatilis species complex rotifer in larviculture

  • Atsushi HagiwaraEmail author
  • Helen S. Marcial
ROTIFERA XV Review Paper


Due to the expanding world aquaculture production, the demand for high quality and quantity of fish larvae has also increased. Up to date, the bottleneck in larviculture is the stable and ample production of appropriate live food such as rotifers and copepods. Among rotifers, Brachionus plicatilis species complex, which encompasses 15 species with varied sizes ranging from 100 to 400 µm, is commonly used in most hatcheries. The use of B. plicatilis species complex (B. plicatilis, B. koreanus, and B. rotundiformis) in larviculture is reported in several review papers. In this review, we first described rotifer species not classified under B. plicatilis species complex, some of which are already used in larviculture, while some have high potential for use based on their characteristics, life history, and distribution. Rotifers, Brachionus angularis, Brachionus calyciflorus, and Proales similis, are described in detail in comparison with B. plicatilis species complex. Furthermore, we discussed some characteristics of rotifers which can affect their predation.


Rotifera Live food Larval culture Rotifer mass culture Brachionus Proales similis 



This research was supported through JSPS KAKENHI Grant Number JP17H03862 to Atsushi Hagiwara.


  1. Agbakimi, I. O., F. O. Arimoro, A. V. Ayanwale, U. N. Keke, J. Gana & J. Abafi, 2017. Mass culture and growth response of rotifer (Brachionus calyciflorus) fed different combinations of manure filtrates and algae. International Journal of Applied Biological Research 81: 70–84.Google Scholar
  2. Ajah, P. O., 2010. Mass culture of rotifer (Brachionus quadridentatus [Hermann, 1783]) using three different algal species. African Journal of Food Science 4: 80–85.Google Scholar
  3. Alanis, J. G., S. S. S. Sarma & S. Nandini, 2009. Prey selectivity and functional response by larval red eyed tetra Moenkhausia sanctaefilomenae (Steindachner, 1907) (Characiformes: Characidae). Brazilian Archives of Biology and Technology 52: 1209–1216.Google Scholar
  4. Aoyama, Y., N. Moriya, S. Tanaka, T. Taniguchi, H. Hosokawa & S. Maegawa, 2015. A novel method for rearing zebrafish by using freshwater rotifers (Brachionus calyciflorus). Zebrafish 12: 288–295.PubMedPubMedCentralGoogle Scholar
  5. Awaiss, A., P. Kestermonth & J. C. Micha, 1996. Fatty acid profiles of two freshwater fish larvae (gudgeon and perch) reared with Brachionus calyciflorus Pallas (rotifer) and/or dry diet. Aquaculture Research 27: 651–658.Google Scholar
  6. Bennett, W. N. & M. E. Boraas, 1988. Isolation of a fast-growing strain of the rotifer Brachionus calyciflorus Pallas using turbidostat culture. Aquaculture 73: 27–36.Google Scholar
  7. Chigbu, P. & V. A. Suchar, 2006. Isolation and culture of the marine rotifer, Colurella dicentra (Gosse, 1887), from a Mississippi Gulf Coast estuary. Aquaculture Research 37: 1400–1405.Google Scholar
  8. Conceição, L. E. C., M. Yúfera, P. Makridis, S. Morais & M. T. Dinis, 2010. Live feeds for early stages of fish rearing. Aquaculture Research 41: 613–640.Google Scholar
  9. Dahril, T., 1997. A study of the freshwater rotifer Brachionus calyciflorus in Pekanbaru, Riau, Indonesia. Hydrobiologia 358: 211–215.Google Scholar
  10. Dhert, P., G. Rombaut, G. Suantika & P. Sorgeloos, 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200: 129–146.Google Scholar
  11. FAO, 2016. The State of World Fisheries and Aquaculture; Contributing to Food Security and Nutrition for All. Food and Agriculture Organization of the United Nations, Rome: 200.Google Scholar
  12. Farhadian, O., L. Daghighi & E. E. Dorche, 2013. Effects of microalgae and alfalfa meal on population growth and production of a freshwater rotifer Euchlanis dilatata (Rotifera: Monogononta). Journal of World Aquaculture Society 44: 86–95.Google Scholar
  13. Gilbert, J. J., 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. Journal of Plankton Research 36: 1576–1584.Google Scholar
  14. Hagiwara, A., C.-S. Lee, G. Miyamoto & A. Hino, 1989. Resting egg formation and hatching of the S-type rotifer Brachionus plicatilis at varying salinities. Marine Biology 103: 327–332.Google Scholar
  15. Hagiwara, A., K. Hamada, A. Nishi, K. Imaizumi & K. Hirayama, 1993. Mass production of rotifer Brachionus plicatilis resting eggs in 50 m3 tanks. Nippon Suisan Gakkaishi 59: 93–98.Google Scholar
  16. Hagiwara, A., T. Kotani, T. W. Snell, M. Assava-Aree & K. Hirayama, 1995a. Morphology, reproduction and genetics of the tropical minute marine rotifer Brachionus plicatilis strains. Journal of Experimental Marine Biology and Ecology 194: 25–37.Google Scholar
  17. Hagiwara, A., M. Jung, T. Sato & K. Hirayama, 1995b. Interspecific interaction between marine rotifer Brachionus plicatilis and zooplankton species found in the rotifer mass culture tanks as contaminants. Fisheries Science 61: 623–627.Google Scholar
  18. Hagiwara, A., W. G. Gallardo, M. Assavaaree, T. Kotani & A. B. de Araujo, 2001. Live food production in Japan: recent progress and future aspects. Aquaculture 200: 111–127.Google Scholar
  19. Hagiwara, A., K. Suga, A. Akazawa, T. Kotani & Y. Sakakura, 2007. Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture 268: 44–52.Google Scholar
  20. Hagiwara, A., S. Wullur, H. S. Marcial, N. Hirai & Y. Sakakura, 2014. Euryhaline rotifer Proales similis as initial live food for rearing fish with small mouth. Aquaculture 432: 470–474.Google Scholar
  21. Hagiwara, A., H.-J. Kim & H. Marcial, 2017. Mass culture and preservation of Brachionus plicatilis sp. complex. In Hagiwara, A. & T. Yoshinaga (eds), Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology. Springer, Singapore: 35–55.Google Scholar
  22. Harzevili, A. S., D. de Charlero, J. Auwerx, J. Van Slycken, P. Dhert & P. Sorgeloos, 2003. Larval rearing of burbot (Lota lota L.) using Brachionus calyciflorus rotifer as starter food. Journal of Applied Ichthyology 19: 84–87.Google Scholar
  23. Hirai N, M. Koiso, K. Teruya, M. Kobayashi, T. Takebe, T. Sato, K. Okuzawa & A. Hagiwara, 2012. Success of seed production of humphead wrasse Cheilinus undulatus with improvement of spawning induction, feeding and rearing conditions. Proceedings of the 40th U.S.-Japan Aquaculture Panel Symposium, Honolulu, Hawaii, pp. 108–111.Google Scholar
  24. Hu, H. & Y. Xi, 2006. Differences in population growth and morphometric characteristics of three strains of Brachionus angularis. Journal of Freshwater Ecology 21: 101–108.Google Scholar
  25. Hu, H. & Y. Xi, 2008. Demographic parameters and mixis of three Brachionus angularis Gosse (Rotatoria) strains fed on different algae. Limnologica 38: 56–62.Google Scholar
  26. Hwang, D.-S., H.-U. Dahms, H. G. Park & J.-S. Lee, 2013. A new intertidal Brachionus and intrageneric phylogenetic relationships among Brachionus as revealed by allometry and CO1-ITS1 gene analysis. Zoological Studies 52: 13.Google Scholar
  27. Kagali, R. N., E. O. Ogello, Y. Sakakura & A. Hagiwara, 2018. Fish-processing wastes as an alternative diet for culturing the minute rotifer Proales similis de Beauchamp. Aquaculture Research 49: 2477–2485.Google Scholar
  28. Le, D. V. B., P. N. Nguyen, K. Dierckens, D. V. Nguyen, P. De Schryver, A. Hagiwara & P. Bossier, 2017. Growth performance of the very small rotifer Proales similis is more dependent on proliferating bacterial community than the bigger rotifer Brachionus rotundiformis. Aquaculture 476: 185–193.Google Scholar
  29. Lee, B. I., S. K. Kim, O. N. Kwon, H. G. Park & J. C. Park, 2013. The optimal salinity and temperature condition for the growth of rotifer, Keratella sp. (in Korean with English abstract). Journal of Fisheries and Marine Education 25: 1205–1213.Google Scholar
  30. Lim, L. C. & C. C. Wong, 1997. Use of the rotifer, Brachionus calyciflorus Pallas, in freshwater ornamental fish larviculture. Hydrobiologia 358: 269–273.Google Scholar
  31. Lim, L. C., P. Dhert & P. Sorgeloos, 2003. Recent developments in the application of live feeds in the freshwater ornamental fish culture. Aquaculture 227: 319–333.Google Scholar
  32. Lubzenz, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245–255.Google Scholar
  33. Majoris, J. E., F. A. Francisco, J. Atema & P. M. Buston, 2018. Reproduction, early development, and larval rearing strategies for two sponge-dwelling neon gobies, Elacatinus lori and E. Colini. Aquaculture 483: 286–295.Google Scholar
  34. Mills, S., A. Alcántara-Rodríguez, J. Ciros-Pérez, A. Gómez, A. Hagiwara, K. H. Galindo, C. D. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J.-S. Lee, D. B. Mark Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. W. Snell, C.-P. Stelzer, C. Q. Tang, R. L. Wallace, D. Fontaneto & E. J. Walsh, 2017. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796: 39–58.Google Scholar
  35. Nandini, S. & S. S. S. Sarma, 2000. Zooplankton preference of two species of freshwater ornamental fish larvae. Journal of Applied Ichthyology 16: 282–284.Google Scholar
  36. Ogata, Y., 2017. Use of freshwater Brachionus for aquaculture. In Hagiwara, A. & T. Yoshinaga (eds), Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology. Springer, Singapore: 75–85.Google Scholar
  37. Ogata, Y. & H. Kurokura, 2012. Use of the freshwater Brachionus angularis as the first food for the larvae of the Siamese fighting fish Betta splendens. Fisheries Science 78: 109–125.Google Scholar
  38. Ogata, Y., Y. Tokue, T. Yoshikawa, A. Hagiwara & H. Kurokura, 2011. A Laotian strain of the rotifer Brachionus angularis holds promise as a food source for small-mouthed larvae of freshwater fish in aquaculture. Aquaculture 312: 72–76.Google Scholar
  39. Ogello, E. O. & A. Hagiwara, 2015. Effects of chicken manure extract on the population growth, mixis induction and body size of the freshwater rotifer Brachionus angularis Gosse 1851. Asian Fisheries Science 28: 174–185.Google Scholar
  40. Ogello, E. O., H.-J. Kim, K. Suga & A. Hagiwara, 2016. Lifetable demography and population growth of the rotifer Brachionus angularis in Kenya: influence of temperature and food density. African Journal of Aquatic Science 41: 329–336.Google Scholar
  41. Oltra, R., R. Todoli, T. Bosque, L. M. Lubian & J. C. Navarro, 2000. Life history and fatty acid composition of the marine rotifer Synchaeta cecilia valentina fed different algae. Marine Ecology Progress Series 193: 125–133.Google Scholar
  42. Papakostas, S., S. Dooms, M. Christodoulou, A. Triantafyllidis, I. Kappas, K. Dierckens, P. Bossier, P. Sorgeloos & T. J. Abatzopoulos, 2006. Identification of cultured brachionus rotifers based on RFLP and SSCP screening. Marine Biotechnology 8(5): 547–559.PubMedGoogle Scholar
  43. Park, H. G., K. W. Lee, S. H. Cho, H. S. Kim, M.-M. Jung & H.-S. Kim, 2001. High density culture of the freshwater rotifer, Brachionus calyciflorus. Hydrobiologia 446(447): 369–374.Google Scholar
  44. Reyes, J. R. C., C. J. L. Monteón, H. C. Urreta, M. C. M. Dosta & G. A. R. Montes de Oca, 2017. Population growth and protein and energy content of Proales similis (Rotifera: Monogononta) reared at different salinities. Turkish Journal of Fisheries and Aquatic Sciences 17: 767–775.Google Scholar
  45. Rico-Martinez, R. & S. I. Dodson, 1992. Culture of the rotifer Brachionus calyciflorus Pallas. Aquaculture 105: 191–199.Google Scholar
  46. Sakakura, Y., 2017. Application of rotifers for larval rearing of marine fishes cultivated under various conditions. In Hagiwara, A. & T. Yoshinaga (eds), Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology. Springer, Singapore: 63–73.Google Scholar
  47. Suchar, V. A. & P. Chigbu, 2006. The effects of algae species and densities on the population growth of the marine rotifer, Colurella dicentra. Journal of Experimental Marine Biology and Ecology 337: 96–102.Google Scholar
  48. Whittington, R. J. & R. Chong, 2007. Global trade in ornamental fish from an Australian perspective: the case for revised import risk analysis and management strategies. Preventive Veterinary Medicine 81: 92–116.PubMedGoogle Scholar
  49. Wullur, S., Y. Sakakura & A. Hagiwara, 2009. The minute monogonont rotifer Proales similis de Beauchamp: culture and feeding to small mouth marine fish larvae. Aquaculture 293: 62–67.Google Scholar
  50. Wullur, S., Y. Sakakura & A. Hagiwara, 2011. Application of the minute monogonont rotifer Proales similis de Beauchamp in larval rearing of seven-band grouper Epinephelus septemfasciatus. Aquaculture 315: 355–360.Google Scholar
  51. Xi, Y.-L., Y.-L. Ge, F. Chen, X.-L. Wen & L.-L. Dong, 2005. Life history characteristics of three strains of Brachionus calyciflorus (Rotifera) at different temperatures. Journal of Freshwater Ecology 20: 707–713.Google Scholar
  52. Xue, Y.-H., X.-X. Yang, G. Zhang & Y.-L. Xi, 2017. Morphological differentiation of Brachionus calyciflorus caused by predation and coal ash pollution. Scientific Reports 7: 15779.PubMedPubMedCentralGoogle Scholar
  53. Yin, X., W. Jin, Y. Zhou, P. Wang & W. Zhao, 2017. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Scientific Reports 7: 4488.PubMedPubMedCentralGoogle Scholar
  54. Yoshimatsu, T. & M. A. Hossain, 2014. Recent advances in the high-density rotifer culture in Japan. Aquaculture International 22: 1587–1603.Google Scholar
  55. Yoshimura, K., K. Tanaka & T. Yoshimatsu, 2003. A novel system for the ultra-high-density production of the rotifer, Brachionus rotundiformis: a preliminary report. Aquaculture 227: 165–172.Google Scholar
  56. Zhang, H., J. Hollander & L.-A. Hansson, 2017. Bi-directional plasticity: rotifer prey adjust spine length to different predator regimes. Scientific Reports 7: 10254.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Fisheries and Environmental SciencesNagasaki UniversityNagasakiJapan
  2. 2.Organization for Marine Science and TechnologyNagasaki UniversityNagasakiJapan

Personalised recommendations