, Volume 829, Issue 1, pp 237–243 | Cite as

A noninvasive method for extracting bivalve DNA from the water-filled mantle cavity

  • Yoshihisa KuritaEmail author
  • Akihiro Kijima
Primary Research Paper


Genetic studies play a great role for determining the biology of bivalves, particularly those covering population genetics, phylogeny, breeding, stock management, and conservation. However, DNA sampling methods that require removal of bivalves from the water and/or opening of their shells often cause stress and damage to bivalves, which can be lethal. The invasiveness of DNA sampling has made it difficult to conduct genetic studies in threatened species, rare species, and/or breeding lineages. In the present study, we developed a non-invasive method for bivalve DNA sampling using the water-filled mantle cavity (WMC). Our method can extract DNA from a small WMC sample (about 100 µl), collected using a fine needle and syringe without opening the shell. We demonstrated that the WMC sample contains intact mitochondrial and nuclear DNA. DNA contamination from other organisms, such as adjacent bivalve individuals, did not affect the resulting PCR and DNA sequencing analyses. Finally, the individuals from whom WMC was collected remained alive for more than 2 months after the experiments. This non-invasive method will be of great assistance in investigating the genetics of bivalves.


Mollusk Genetics Environmental water 



This study was funded from Kurita Water and Environment Foundation (17B019) and partly supported by Tohoku Ecosystem-Associated Marine Sciences and JPSP KAKENHI (15K14561). We deeply thank Dr. Minoru Ikeda for his helpful comments on genetic analysis. We also thank anonymous reviewers for their helpful comments.

Supplementary material

10750_2018_3835_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
10750_2018_3835_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 13 kb)
10750_2018_3835_MOESM3_ESM.docx (376 kb)
Supplementary material 3 (DOCX 375 kb)


  1. Claremont, M., D. G. Reid & S. T. Williams, 2008. A molecular phylogeny of the Rapaninae and Ergalataxinae (Neogastropoda: Muricidae). Journal of Molluscan Studies 74: 215–221.CrossRefGoogle Scholar
  2. Clusa, L., L. Miralles, A. Basanta, C. Escot & E. García-Vázquez, 2017. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PloS ONE 12: e0188126.CrossRefGoogle Scholar
  3. Chiesa, S., L. Lucentini, R. Freitas, F. N. Marzano, F. Minello, C. Ferrari, L. Filonzi, E. Figueira, S. Breda, G. Baccarani & E. Argese, 2014. Genetic diversity of introduced Manila clam Ruditapes philippinarum populations inferred by 16S rDNA. Biochemical Systematics and Ecology 57: 52–59.CrossRefGoogle Scholar
  4. Colgan, D. J., W. F. Ponder, E. Beacham & J. Macaranas, 2007. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Molecular Phylogenetics and Evolution 42: 717–737.CrossRefGoogle Scholar
  5. Combosch, D. J. & G. Giribet, 2016. Clarifying phylogenetic relationships and the evolutionary history of the bivalve order Arcida (Mollusca: Bivalvia: Pteriomorphia). Molecular Phylogenetics and Evolution 94: 298–312.CrossRefGoogle Scholar
  6. Cordero, D., M. Delgado, B. Liu, J. Ruesink & C. Saavedra, 2017. Population genetics of the Manila clam (Ruditapes philippinarum) introduced in North America and Europe. Scientific Reports 7: 39745.CrossRefGoogle Scholar
  7. Cowart, D. A., M. A. Renshaw, C. A. Gantz, J. Umek, S. Chandra, S. P. Egan, D. M. Lodge & E. R. Larson, 2018. Development and field validation of an environmental DNA (eDNA) assay for invasive clams of the genus Corbicula. Management of Biological Invasions 9: 27–37.CrossRefGoogle Scholar
  8. da Cruz Santos-Neto, G., I. S. da Silva Nunes, C. R. Beasley, A. R. B. Silva, C. P. Gomes & C. H. Tagliaro, 2018. Evolution in action: allopatry, variable diversity and a stepping-stone model of migration among populations of the freshwater bivalve Triplodon corrugatus from the north-eastern Amazon. Hydrobiologia 810: 227–237.CrossRefGoogle Scholar
  9. Davies, M. S. & S. J. Hawkins, 1998. Mucus from marine molluscs. Advances in Marine Biology 34: 1–71.CrossRefGoogle Scholar
  10. de Oliveira, M. J. S., C. R. Beasley, N. G. V. Barros, N. do Socorro Marques-Silva, L. R. L. de Simone, E. S. Lima & C. H. Tagliaro, 2017. Two African origins of naturalized brown mussel (Perna perna) in Brazil: past and present bioinvasions. Hydrobiologia 794: 59–72.CrossRefGoogle Scholar
  11. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  12. Furuta, H. & A. Kajita, 1983. Dimeric hemoglobin of the bivalve mollusc Anadara broughtonii: complete amino acid sequence of the globin chain. Biochemistry 22: 917–922.CrossRefGoogle Scholar
  13. Gardner, J. P., C. Boesche, J. M. Meyer & A. R. Wood, 2012. Analyses of DNA obtained from shells and brine-preserved meat of the giant clam Tridacna maxima from the central Pacific Ocean. Marine Ecology Progress Series 453: 297–301.CrossRefGoogle Scholar
  14. Geist, J. & R. Kuehn, 2005. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: implications for conservation and management. Molecular Ecology 14: 239–425.Google Scholar
  15. Kurita, Y., N. Hashimoto & H. Wada, 2016. Evolution of the molluscan body plan: the case of the anterior adductor muscle of bivalves. Biological Journal of the Linnean Society 119: 420–429.CrossRefGoogle Scholar
  16. Liu, Y. G., T. Kurokawa, M. Sekino, T. Tanabe & K. Watanabe, 2013. Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 8: 72–81.Google Scholar
  17. Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810(1): 1–14.CrossRefGoogle Scholar
  18. Masaoka, T. & T. Kobayashi, 2005. Species identification of Pinctada imbricata using intergenic spacer of nuclear ribosomal RNA genes and mitochondrial 16S ribosomal RNA gene regions. Fisheries Science 71: 837–846.CrossRefGoogle Scholar
  19. Meyer, J. B., L. E. Cartier, E. A. Pinto-Figueroa, M. S. Krzemnicki, H. A. Hänni & B. A. McDonald, 2013. DNA fingerprinting of pearls to determine their origins. PloS ONE 8: e75606.CrossRefGoogle Scholar
  20. Morino, Y., N. Hashimoto & H. Wada, 2017. Expansion of TALE homeobox genes and the evolution of spiralian development. Nature Ecology & Evolution 1: 1942.CrossRefGoogle Scholar
  21. Sassoubre, L. M., K. M. Yamahara, L. D. Gardner, B. A. Block & A. B. Boehm, 2016. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science & Technology 50: 10456–10464.CrossRefGoogle Scholar
  22. Zhang, X., Q. Li, L. Kong & H. Yu, 2018. Epigenetic variation of wild populations of the Pacific oyster Crassostrea gigas determined by methylation-sensitive amplified polymorphism analysis. Fisheries Science 84: 61–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Graduate School of Agricultural ScienceKyushu UniversityFukutsuJapan
  2. 2.Graduate School of Agricultural ScienceTohoku UniversityOnagawaJapan

Personalised recommendations