Advertisement

Hydrobiologia

, Volume 828, Issue 1, pp 353–367 | Cite as

Defining ecological status of phytobenthos in very large rivers: a case study in practical implementation of the Water Framework Directive in Romania

  • M. G. KellyEmail author
  • G. Chiriac
  • A. Soare-Minea
  • C. Hamchevici
  • S. Birk
Primary Research Paper

Abstract

Establishing ecological assessment schemes is challenging when gradients are short and there are no sites with minimal anthropogenic alteration against which metrics can be calibrated. This is the situation for large rivers in Romania and this paper describes efforts to establish meaningful ecological status concepts. The intercalibration exercise, conducted as part of Water Framework Directive (WFD) implementation, has provided a metric (“phytobenthos Intercalibration Common Metric“, pICM) which allows ecological status in different countries to be expressed on a common scale. The average boundary positions of countries who participated in this exercise provided a “common view” of status and, together with pICM, offer an “off-the-shelf” solution for countries unable to develop independent methods. However, even when expressed as pICM, Romanian phytobenthos data have a weak relationship with nutrients. Analysis of chemical data and comparison with similar data from elsewhere in Europe confirm that there are few sites with significantly elevated nutrient concentrations. Incorporation of the Romanian data into the larger dataset produced a stronger relationship from which the status of phytobenthos in very large rivers in Romania could be confirmed. This paper shows how the consensus that emerged from the WFD intercalibration exercise supports those countries unable to participate in the initial exercises.

Keywords

Phytobenthos Diatoms Water Framework Directive Intercalibration Ecological status Rivers 

Supplementary material

10750_2018_3824_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Abonyi, A., E. Ács, A. Hidas, I. Grigorszky, G. Várbíró, G. Borics & K. T. Kiss, 2018. Functional diversity of phytoplankton highlights long-term gradual regime shift in the middle section of the Danube River due to global warming, human impacts and oligotrophication. Freshwater Biology 63: 456–472.CrossRefGoogle Scholar
  2. Almeida, S. F. P., C. Elias, J. Ferreira, E. Tornés, C. Puccinelli, F. Delmas, G. Dörflinger, G. Urbanič, S. Marcheggiani, J. Rosebery, L. Mancini & S. Sabater, 2013. Water quality assessment of rivers using diatom metrics across Mediterranean Europe: a methods intercalibration exercise. Science of the Total Environment 476–477: 768–776.PubMedGoogle Scholar
  3. Baattrup-Pedersen, A. & T. Riis, 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology 42: 375–385.CrossRefGoogle Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  5. Behrendt, H. & M. Zessner, 2005. Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin—II. Long-term changes. Large Rivers 16: 221–247.Google Scholar
  6. Bennett, C., R. Owen, S. Birk, A. Buffagni, S. Erba, N. Mengin, J. Murray-Bligh, G. Ofenböck, I. Pardo, W. van de Bund, F. Wagner & J.-G. Wasson, 2011. Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia 667: 31–48.CrossRefGoogle Scholar
  7. Birk, S., L. van Kouwen & N. Willby, 2012a. Harmonising the bioassessment of large rivers in the absence of near-natural reference conditions – a case study of the Danube River. Freshwater Biology 57: 1716–1732.CrossRefGoogle Scholar
  8. Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas & D. Hering, 2012b. Three hundred ways to assess Europe’s surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.CrossRefGoogle Scholar
  9. Birk, S., N. J. Willby, M. G. Kelly, W. Bonne, A. Borja, S. Poikane & W. van de Bund, 2013. Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Science of the Total Environment 454–455: 490–499.CrossRefGoogle Scholar
  10. Boon, P. J., 2005. The catchment approach as the scientific basis of river basin management. Archiv für Hydrobiologie, Supplement 158(1–2): 29–58.Google Scholar
  11. CEMAGREF, 1982. Etude de méthodes biologiques quantitatives d’appreciation de la qualité des eaux. Rapport Q.E. Lyon-A.F.B. Rhône-Mediterranée-Corse.Google Scholar
  12. CEN, 2014a. Water quality – guidance standard for the surveying of aquatic macrophytes in running waters. EN 14184: 2003. Comité European de Normalisation, Geneva.Google Scholar
  13. CEN, 2014b. Water quality – Guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters. EN 14407:2004. Comité European de Normalisation, Geneva.Google Scholar
  14. ECOSTAT, 2004. Overview of Common Intercalibration Types. Working Group 2.A Ecological Status, Final Version 5.1. Available from: http://ec.europa.eu/environment/water/water-framework/objectives/indexen.htm.
  15. European Commission, 2011. Guidance Document on the Intercalibration process 2008-2011. Guidance Document 14. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Publications Office of the European Union, Luxembourg.Google Scholar
  16. European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 20000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities Series L 327: 1–73.Google Scholar
  17. European Union, 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise. Official Journal of the European Union Series L 332: 20–44.Google Scholar
  18. European Union, 2009. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. Official Journal of the European Union Series L 201: 36–38.Google Scholar
  19. European Union, 2013. Commission Decision of 20 September 2013 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2008/915/EC. Official Journal of the European Union Series L 266: 1–47.Google Scholar
  20. European Union, 2018. Commission Decision of 12 February 2018 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2013/480/EU. Official Journal of the European Union Series L 266: 1–47.Google Scholar
  21. Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical approach to classifying stream habitat features: viewing streams in a watershed context. Environmental Management 10: 199–214.CrossRefGoogle Scholar
  22. ICPDR, 2010. Water Quality in the Danube River Basin – 2007. TNMN – Yearbook 2007. Imprint. International Commission for the Protection of the Danube River, Vienna.Google Scholar
  23. Kelly, M. G., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferreol, M. Golub, A. Jarlman, M. Kahlert, J. Lucey, B. Ní Chatháin, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, C. Schranz, J. Schaumburg, J. Tison, H. van Dam & S. Vilbaste, 2008a. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 695: 109–124.Google Scholar
  24. Kelly, M. G., S. Juggins, R. Guthrie, S. Pritchard, B. J. Jamieson, B. Rippey, H. Hirst & M. L. Yallop, 2008b. Assessment of ecological status in UK rivers using diatoms. Freshwater Biology 53: 403–422.Google Scholar
  25. Kelly, M. G., L. King & B. ní Chatháin, 2009. The conceptual basis of ecological status assessments using diatoms. Biology and Environment: Proceedings of the Royal Irish Academy 109B: 175–189.Google Scholar
  26. Kelly, M. G., C. Gómez-Rodríguez, M. Kahlert, S. F. P. Almeida, C. Bennett, M. Bottin, F. Delmas, J.-P. Descy, G. Dörflinger, B. Kennedy, P. Marvan, L. Opatrilova, I. Pardo, P. Pfister, J. Rosebery, S. Schneider & S. Vilbaste, 2012. Establishing expectations for pan-European diatom based ecological status assessments. Ecological Indicators 20: 177–186.CrossRefGoogle Scholar
  27. Krammer, K. & H. Lange-Bertalot, 1986. Die Süsswasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil: Naviculaceae. Gustav Fischer-Verlag, Stuttgart.Google Scholar
  28. Krammer, K. & H. Lange-Bertalot, 1988. Die Süßwasserflora von Mitteleuropa, II:2. Bacillariophyceae. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  29. Krammer, K. & H. Lange-Bertalot, 1991a. Die Süsswasserflora von Mitteleuropa 2: Bacillariophyceae. 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
  30. Krammer, K. & H. Lange-Bertalot, 1991b. Süsswasserflora von Mitteleuropa 2, Bacillariophyceae. Teil 4: Achnanthaceae. Kritische Ergänzungen zu Achnanthes s.l., Navicula s. str., Gomphonema. Spektrum Akademischer Verlag/Gustav Fischer, Heidelberg.Google Scholar
  31. Lecointe, C., M. Coste & J. Prygiel, 1993. “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269(270): 509–513.CrossRefGoogle Scholar
  32. Makovinska, J. & D. Hlubikova, 2014. Phytobenthos of the river danube. In Liska, I. (ed.), The Danube River Basin. Springer, Berlin: 317–340.CrossRefGoogle Scholar
  33. Pardo, I., C. Gómez-Rodríguez, J.-G. Wasson, R. Owen, W. van de Bund, M. Kelly, C. Bennett, S. Birk, A. Buffagni, S. Erba, N. Mengin, J. Murray-Bligh & G. Ofenböeck, 2012. The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems. Science of the Total Environment 420: 33–42.CrossRefGoogle Scholar
  34. Poikane, S., S. Birk, J. Böhmer, L. Carvalho, C. de Hoyos, H. Gassner, S. Hellsten, M. Kelly, A. L. Solheim, M. Olin, K. Pall, G. Phillips, R. Portielje, D. Ritterbusch, L. Sandin, A.-K. Schartau, A. G. Solimini, M. van den Berg, G. Wolfram & W. van de Bund, 2015. A hitchhiker’s guide to European lake ecological assessment and intercalibration. Ecological Indicators 52: 533–544.CrossRefGoogle Scholar
  35. Poikane, S., M. G. Kelly & M. Cantonati, 2016. Benthic algal assessment of ecological status in European lakes and rivers: challenges and opportunities. Science of the Total Environment 568: 603–613.CrossRefGoogle Scholar
  36. R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  37. Riquier, J., H. Piégay & M. Sulc Michalková, 2015. Hydromorphological conditions in eighteen restored floodplain channels of a large river: Linking patterns to processes. Freshwater Biology 60: 1085–1103.CrossRefGoogle Scholar
  38. Rott, E., E. Pipp, P. Pfister, H. van Dam, K. Ortler, N. Binder & K. Pall, 1999. Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirtschaft, Vienna, Austria.Google Scholar
  39. Schneider, S. C., M. Kahlert & M. G. Kelly, 2013. Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment 444: 73–84.CrossRefGoogle Scholar
  40. Schöll, F., S. Birk & J. Böhmer, 2012. WFD intercalibration phase 2: milestone 6 report: water category/GIG/BQE/horizontal activity: XGIG large rivers. Joint Research Centre, European Commission, Ispra.Google Scholar
  41. Sommerwerk, N., C. Baumgartner, J. Bloesch, T. Hein, A. Ostojić & M. Paunović, 2008. The Danube river basin. In Tockner, K., C. T. Robinson & U. Uehlinger (eds), Rivers of Europe. Elsevier, London: 59–112.Google Scholar
  42. Stanković, I., T. Vlahović, M. G. Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. In Salmaso, N., L. N. Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák (eds), Phytoplankton responses to human impacts at different scales. Springer, Berlin: 217–231.CrossRefGoogle Scholar
  43. Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.CrossRefGoogle Scholar
  44. Thoms, M. C., 2003. Floodplain-river ecosystems: Lateral connections and the implications of human interference. Geomorphology 56: 335–349.CrossRefGoogle Scholar
  45. Willby N, S. Birk, S. Poikane & W. van de Bund, 2014. Water framework directive intercalibration manual: procedure to fit new or updated classification methods to the results of a completed intercalibration. European Commission. JRC Technical Reports. Publications Office of the European Union.Google Scholar
  46. Zoboli, O., A. Viglione, A. Rechberger & M. Zessner, 2015. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube. Science of the Total Environment 518–519: 117–129.CrossRefGoogle Scholar
  47. Zweimuller, I., M. Zessner & T. Hein, 2008. Effects of climate change on nitrate loads in a large river: the Austrian Danube as example. Hydrological Processes 22: 1022–1036.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Bowburn ConsultancyDurhamUK
  2. 2.Administratia Nationalǎ “Apele Române”BucharestRomania
  3. 3.Department of Aquatic Ecology, Faculty of BiologyUniversity of Duisburg-EssenEssenGermany
  4. 4.Centre of Water and Environmental ResearchUniversity of Duisburg-EssenEssenGermany

Personalised recommendations