Advertisement

Hydrobiologia

, Volume 828, Issue 1, pp 183–198 | Cite as

Benthic diatom metacommunity across small freshwater lakes: driving mechanisms, β-diversity and ecological uniqueness

  • Beáta SzabóEmail author
  • Edina Lengyel
  • Judit Padisák
  • Csilla Stenger-Kovács
Primary Research Paper

Abstract

In this study, driving forces and diversity patterns of a benthic diatom metacommunity across small freshwater lakes exhibiting environmental heterogeneity were investigated. Furthermore, local (LCBD) and species (SCBD) contributions to β-diversity and their driving parameters were assessed with abundance- and incidence-based analyses. Our results revealed that both spatial distance and environmental heterogeneity affected the community assembly, which corresponds most to the mass-effect (ME) concept. This theory was confirmed by high α-diversity of sampling sites; however, high overall β-diversity enhanced mainly by turnover contradicted the ME paradigm. LCBD indices were affected by environmental variables; furthermore, LCBD and LCBD in terms of species replacement showed a strong positive correlation. The ecologically most unique sites hosted relatively low species richness, and common species with intermediate-sized or broad niches contributed mostly to the regional β-diversity. However, abundance- and incidence-based calculations revealed different relationships of SCBD with the species’ total abundance and the number of occupied sites. Consequently, we favor the previous suggestions that comprehensive research focusing on conservation should incorporate the investigation of LCBD, SCBD, species-rich sites and also ecologically restricted species. Moreover, in assessing ecological uniqueness, both abundance and binary data sets should be considered since they might shed light on distinct patterns.

Keywords

Assembly mechanisms Diversity patterns Ecological uniqueness Mass-effect Species richness 

Notes

Acknowledgements

We thank the colleagues of the Department of Limnology for their contribution in field sampling and in laboratory work. The study was supported by the Széchenyi 2020 under the EFOP-3.6.1-16-2016-00015 and the National Research Development and Innovation Office (NKFIH K120595). Beáta Szabó was supported by the ÚNKP-17-3-IV-PE-5 New National Excellence Program of the Ministry of Human Capacities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10750_2018_3811_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 9 kb)
10750_2018_3811_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 11 kb)
10750_2018_3811_MOESM3_ESM.xlsx (10 kb)
Supplementary material 3 (XLSX 9 kb)
10750_2018_3811_MOESM4_ESM.docx (795 kb)
Supplementary material 4 (DOCX 794 kb)

References

  1. Adler, P. B., J. HilleRislambers & J. M. Levine, 2007. A niche for neutrality. Ecology Letters 10: 95–104.CrossRefGoogle Scholar
  2. Alonso, D., R. S. Etienne & A. J. McKane, 2006. The merits of neutral theory. Trends in Ecology and Evolution 21: 451–457.CrossRefGoogle Scholar
  3. APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. United Book Press, Maltimore, MD.Google Scholar
  4. Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.CrossRefGoogle Scholar
  5. Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4: 552–557.CrossRefGoogle Scholar
  6. Baselga, A., 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799–808.CrossRefGoogle Scholar
  7. Baselga, A., A. Jiménez-Valverde & G. Niccolini, 2007. A multiple-site similarity measure independent of richness. Biology Letters 3: 642–645.CrossRefGoogle Scholar
  8. Baselga, A., D. Orme, S. Villeger, J. De Bortoli & F. Leprieur, 2017. Betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.4-1. https://CRAN.R-project.org/package=betapart.
  9. Bey, M-Y. & L. Ector, 2010. Atlas des diatomées des cours d’eau de la région Rhône-Alpes, Tome 1-6. Direction régionale de l’Environnement, de l’Aménagement et du Logement Rhône-Alpes, Lyon.Google Scholar
  10. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  11. Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRefGoogle Scholar
  12. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  13. Breiman, L., J. H. Friedman, R. A. Olshen & C. J. Stone, 1984. Classification and Regression Trees. Wadsworth International Group, Belmont.Google Scholar
  14. CEN (Comité Européen de Normalisation), 2003. Water Quality Guidance Standard for the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers. EN 13946:2003, Geneva.Google Scholar
  15. Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences 104: 17430–17434.CrossRefGoogle Scholar
  16. Conradi, T., V. M. Temperton & J. Kollmann, 2017. Beta diversity of plant species in human-transformed landscapes: control of community assembly by regional productivity and historical connectivity. Perspectives in Plant Ecology, Evolution and Systematics 24: 1–10.CrossRefGoogle Scholar
  17. Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.CrossRefGoogle Scholar
  18. Da Silva, P. G. & M. I. M. Hernández, 2014. Local and regional effects on community structure of dung beetles in a mainland-island scenario. PLoS ONE 9: e111883.CrossRefGoogle Scholar
  19. De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.CrossRefGoogle Scholar
  20. Dong, X., B. Li, F. He, Y. Gu, M. Sun, H. Zhang, L. Tan, W. Xiao, S. Liu & Q. Cai, 2016. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams. Scientific Reports 6: 24711.CrossRefGoogle Scholar
  21. Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.CrossRefGoogle Scholar
  22. Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 2017. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.0-8. https://CRAN.R-project.org/package=adespatial.
  23. Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.CrossRefGoogle Scholar
  24. Gaston, K. J., P. A. V. Borges, F. He & C. Gaspar, 2006. Abundance, spatial variance and occupancy: arthropod species distribution in the Azores. Journal of Animal Ecology 75: 646–656.CrossRefGoogle Scholar
  25. Göthe, E., D. G. Angeler, S. Gottschalk, S. Löfgren & L. Sandin, 2013. The influence of environmental, biotic and spatial factors on diatom metacommunity structure in Swedish headwater streams. PLoS ONE 8: e72237.CrossRefGoogle Scholar
  26. Gravel, D., C. D. Canham, M. Beaudet & C. Messier, 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters 9: 399–409.CrossRefGoogle Scholar
  27. Guenard, G., P. Legendre & with contributions from B. Pages, 2017. codep: Multiscale Codependence Analysis. R package version 0.6-5. https://CRAN.R-project.org/package=codep.
  28. Hájekm, M., J. Roleček, K. Cottenie, K. Kintrová, M. Horsák, A. Poulíčková, P. Hájková, M. Fránková & D. Dítě, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.CrossRefGoogle Scholar
  29. Hall, R. I. & J. P. Smol, 1992. A weighted—averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417–434.CrossRefGoogle Scholar
  30. Heino, J., 2013. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution 3: 344–355.CrossRefGoogle Scholar
  31. Heino, J. & M. Grönroos, 2017. Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183: 151–160.CrossRefGoogle Scholar
  32. Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykrä, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.CrossRefGoogle Scholar
  33. Hofmann, G., M. Werum & H. Lange-Bertalot, 2011. Diatomeen im Süßwasser- Benthos von Mitteleuropa. Koeltz Scientific Books, Königstein.Google Scholar
  34. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey.Google Scholar
  35. King, L., P. Barker & R. I. Jones, 2000. Epilithic algal communities and their relationship to environmental variables in lakes of the English Lake District. Freshwater Biology 45: 425–442.CrossRefGoogle Scholar
  36. King, L., G. Clarke, H. Bennion, M. Kelly & M. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15–25.CrossRefGoogle Scholar
  37. Krammer, K., 2000. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 1. The Genus Pinnularia). ARG Gantner Verlag KG, Ruggel.Google Scholar
  38. Krammer, K., 2002. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 3. Cymbella). ARG Gantner Verlag KG, Ruggel.Google Scholar
  39. Krammer, K., 2003. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 4. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella). ARG Gantner Verlag KG, Ruggel.Google Scholar
  40. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer D (eds), Süsswasserflora von Mitteleuropa, Band 2/4. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  41. Krammer, K. & H. Lange-Bertalot, 1999a. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer D (eds), Süsswasserflora von Mitteleuropa, Band 2/1. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  42. Krammer, K. & H. Lange-Bertalot, 1999b. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer D (eds), Süsswasserflora von Mitteleuropa, Band 2/2. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  43. Krammer, K. & H. Lange-Bertalot, 2000. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer D (eds), Süsswasserflora von Mitteleuropa, Band 2/3, Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  44. Kristiansen, J., 1996. Dispersal of freshwater algae: a review. Hydrobiologia 336: 151–157.CrossRefGoogle Scholar
  45. Lange-Bertalot, H., 2001. Diatoms of Europe Diatoms of the European Inland Waters and Comparable Habitats (Vol. 2. Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia). ARG Gantner Verlag KG, Ruggel.Google Scholar
  46. Lange-Bertalot, H., M. Malgorzata & A. Witkowski, 2011. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 6. Eunotia and some related genera). ARG Gantner Verlag KG, Ruggel.Google Scholar
  47. Langenheder, S. & H. Ragnarsson, 2007. The role of environmental and spatial factors for the composition of aquatic bacterial communities. Ecology 88: 2154–2161.CrossRefGoogle Scholar
  48. Legendre, P., 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23: 1324–1334.CrossRefGoogle Scholar
  49. Legendre, P. & M. De Cáceres, 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16: 951–963.CrossRefGoogle Scholar
  50. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  51. Leibold, M. A. & M. A. McPeek, 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87: 1399–1410.CrossRefGoogle Scholar
  52. Leibold, M. A. & J. M. Chase, 2017. Metacommunity Ecology. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
  53. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzales, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  54. Levkov, Z., 2009. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 5. Amphora sensu lato). ARG Gantner Verlag KG, Ruggel.Google Scholar
  55. Levkov, Z., D. Metzeltin & A. Pavlov, 2013. Diatoms of Europe: Diatoms of the European Inland Waters and Comparable Habitats (Vol. 7. Luticola and Luticolopsis). Koeltz Scientific Books, Königstein.Google Scholar
  56. Lim, D. S. S., C. Kwan & M. S. V. Douglas, 2001. Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: an examination of community relationships and habitat preferences. Journal of Phycology 37: 379–392.CrossRefGoogle Scholar
  57. Lindström, E. S. & S. Langenheder, 2012. Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports 4: 1–9.CrossRefGoogle Scholar
  58. Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.CrossRefGoogle Scholar
  59. Lopes, P. M., L. M. Bini, S. A. J. Declerck, V. F. Farjalla, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS One 9: e109581.CrossRefGoogle Scholar
  60. Maloufi, S., A. Catherine, D. Mouillot, C. Louvard, A. Couté, C. Bernard & M. Troussellier, 2016. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology 61: 633–645.CrossRefGoogle Scholar
  61. Milborrow, S., 2017. Rpart.plot: Plot ‘rpart’ Models: An Enhanced Version of ‘plot.rpart’. R package version 2.1.2. https://CRAN.R-project.org/package=rpart.plot.
  62. Mouquet, N. & M. Loreau, 2003. Community Patterns in Source-Sink Metacommunities. The American Naturalist 162: 544–557.CrossRefGoogle Scholar
  63. Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16: 149–159.CrossRefGoogle Scholar
  64. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2017. Vegan: community ecology package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan.
  65. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefGoogle Scholar
  66. Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefGoogle Scholar
  67. R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.
  68. Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel & K. Roy, 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40: 245–269.CrossRefGoogle Scholar
  69. Soininen, J., 2007. Environmental and spatial control of freshwater diatoms: a review. Diatom Research 22: 473–490.CrossRefGoogle Scholar
  70. Soininen, J., 2014. A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95: 3284–3292.CrossRefGoogle Scholar
  71. Soininen, J., J. Heino & J. Wang, 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27: 96–109.CrossRefGoogle Scholar
  72. Szabó, B., E. Lengyel, J. Padisák, M. Vass & C. Stenger-Kovács, 2018. Structuring forces and β-diversity of benthic diatom metacommunities in soda pans of the Carpathian Basin. European Journal Phycology 53: 219–229.CrossRefGoogle Scholar
  73. Teittinen, A., J. Wang, S. Strömgård & J. Soininen, 2017. Local and geographical factors jointly drive elevational patterns in three microbial groups across subarctic ponds. Global Ecology and Biogeography 26: 973–982.CrossRefGoogle Scholar
  74. Therneau, T., B. Atkinson & B. Ripley, 2017. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1-11. https://CRAN.R-project.org/package=rpart.
  75. Tisseuil, C., F. Leprieur, G. Grenouillet, M. Vrac & S. Lek, 2012. Projected impacts of climate change on spatio-temporal patterns of freshwater fish beta diversity: a deconstructing approach. Global Ecology and Biogeography 21: 1213–1222.CrossRefGoogle Scholar
  76. Tonkin, J. D., J. Heino, A. Sundermann, P. Haase & S. C. Jähnig, 2016. Context dependency in biodiversity patterns of central German stream metacommunities. Freshwater Biology 61: 607–620.CrossRefGoogle Scholar
  77. Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183–206.CrossRefGoogle Scholar
  78. Vellend, M., 2016. The Theory of Ecological Communities (MPB-57). Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
  79. Viana, D. S., J. Figuerola, K. Schwenk, M. Manca, A. Hobæk, M. Mjelde, C. D. Preston, R. J. Gornall, J. M. Croft, R. A. King, A. J. Green & L. Santamaría, 2016. Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography (Cop) 39: 281–288.CrossRefGoogle Scholar
  80. Vilmi, A., S. M. Karjalainen, S. Hellsten & J. Heino, 2016. Bioassessment in a metacommunity context: are diatom communities structured solely by species sorting? Ecological Indicators 62: 86–94.CrossRefGoogle Scholar
  81. Vilmi, A., S. M. Karjalainen & J. Heino, 2017. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Diversity and Distributions 23: 1042–1053.CrossRefGoogle Scholar
  82. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.CrossRefGoogle Scholar
  83. Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.CrossRefGoogle Scholar
  84. Willig, M. R., D. M. Kaufman & R. D. Stevens, 2003. Latitudinal gradients of biodiversity: patterns, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34: 273–309.CrossRefGoogle Scholar
  85. Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B 73: 3–36.CrossRefGoogle Scholar
  86. Wood, S. N., N. Pya & B. Säfken, 2016. Smoothing Parameter and Model Selection for General Smooth Models. Journal of the American Statistical Association 111: 1548–1563.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.MTA-PE Limnoecology Research GroupHungarian Academy of SciencesVeszprémHungary
  2. 2.Department of LimnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations