, Volume 844, Issue 1, pp 9–20 | Cite as

Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction

  • John J. GilbertEmail author


Experiments with two strains of the facultative epibiont, Brachionus rubens, tested the ability of this rotifer to avoid predation by the rotifer Asplanchna, and its propensity for sexual reproduction and consequent diapause at different population densities. Unlike some congeners, B. rubens did not have a morphological response to Asplanchna by developing longer spines or a larger body. However, it responded to this predator, and its kairomone, with a behavioral defense: a higher propensity to transition from free-swimming to attachment, typically in dense aggregations. Attached individuals were less likely to be captured and ingested, so that B. rubens outlived Asplanchna in some mixed-species cultures. Although crowding induces sex in some congeners, it did not do so in B. rubens. Instead, the proportion of sexual (mictic) daughters produced by females cultured in different volumes (0.5–60 ml) was density-independent: ~ 0.2 for the Argentina strain and ~ 0.6 for the Australia strain. Such fixed levels of sex have rarely been detected in rotifers. In B. rubens, they may be a strategy to ensure some sex with diapause at all times, but permit continued population growth via female parthenogenesis at the very high densities that normally occur on hosts and other surfaces.


Aggregation Attachment Epibionts Incidence of sex Predator-induced behavioral defense 



I thank Maria C. Diéguez for collecting dried sediment from Laguna los Juncos, Argentina, and Daryl Nielsen for collecting and sending me dried sediment from Ryan’s 2 billabong, Australia. I am grateful to Russell Shiel for identifications of Brachionus rubens and Moina tenuicornis from this billabong, and for providing GPS coordinates. Many helpful comments and suggestions from reviewers improved the manuscript and are greatly appreciated.


  1. Gilbert, J. J., 1967. Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Archiv für Hydrobiologie 64: 1–62.Google Scholar
  2. Gilbert, J. J., 1985. Escape response of the rotifer Polyarthra: a high-speed cinematographic analysis. Oecologia 66: 322–331.CrossRefGoogle Scholar
  3. Gilbert, J. J., 1987. The Polyarthra escape response: defense against interference from Daphnia. Hydrobiologia 147: 235–238.CrossRefGoogle Scholar
  4. Gilbert, J. J., 2004. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. Journal of Limnology 63(Suppl 1): 32–36.CrossRefGoogle Scholar
  5. Gilbert, J. J., 2014. Morphological and behavioral responses of a rotifer to the predator Asplanchna. Journal of Plankton Research 36: 1576–1584.CrossRefGoogle Scholar
  6. Gilbert, J. J., 2017. Non-genetic polymorphisms in rotifers: environmental and endogenous controls, development, and features for predictable or unpredictable environments. Biological Reviews 92: 964–992.CrossRefGoogle Scholar
  7. Gilbert, J. J., 2018. Morphological variation and its significance in a polymorphic rotifer: environmental, endogenous and genetic controls. BioScience 68: 169–181.CrossRefGoogle Scholar
  8. Gilbert, J. J. & M. C. Diéguez, 2010. Low crowding threshold for induction of sexual reproduction and diapause in a Patagonian rotifer. Freshwater Biology 55: 1705–1718.CrossRefGoogle Scholar
  9. Gilbert, J. J. & K. L. Kirk, 1988. Escape response of the rotifer Keratella: description, stimulation, fluid dynamics, and ecological significance. Limnology and Oceanography 33: 1440–1450.Google Scholar
  10. Gilbert, J. J. & M. A. McPeek, 2013. Maternal age and spine development in a rotifer: ecological implications and evolution. Ecology 94: 2166–2172.CrossRefGoogle Scholar
  11. Green, J., 1974. Parasites and epibionts of Cladocera. Transactions of the Zoological Society of London 32: 417–515.CrossRefGoogle Scholar
  12. Halbach, U., 1969. Das Zusammenwirken von Konkurrenz und Räuber-Beute-Beziehungen bei Rädertieren. Zoologischer Anzeiger, Supplement band 33: 72–79.Google Scholar
  13. Iyer, N. & R. T. Rao, 1993. Effect of the epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255(256): 325–332.CrossRefGoogle Scholar
  14. Iyer, N. & R. T. Rao, 1995. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313(314): 377–380.CrossRefGoogle Scholar
  15. Kirk, K. L. & J. J. Gilbert, 1988. The escape behavior of Polyarthra in response to artificial flow stimuli. Bulletin of Marine Science 43: 551–560.Google Scholar
  16. Matveeva, L. K., 1989. Interrelations of rotifers with predatory and herbivorous Cladocera: a review of Russian works. Hydrobiologia 186(187): 69–73.CrossRefGoogle Scholar
  17. May, L., 1989. Epizoic and parasitic rotifers. Hydrobiologia 186(187): 59–67.CrossRefGoogle Scholar
  18. Nandini, S., R. Pérez-Chávez & S. S. S. Sarma, 2003. The effect of prey morphology on the feeding behavior and population growth of the predatory rotifer Asplanchna sieboldi: a case study using five species of Brachionus (Rotifera). Freshwater Biology 48: 2131–2140.CrossRefGoogle Scholar
  19. Pauwels, K., L. De Meester, H. Michels, E. Jeppesen & E. Decaestecker, 2014. An evolutionary perspective on the resistance of Daphnia to the epizoic rotifer Brachionus rubens. Freshwater Biology 59: 1247–1256.CrossRefGoogle Scholar
  20. Pejler, B. & B. Bērziņš, 1989. On choice of substrate and habitat in brachionid rotifers. Hydrobiologia 186(187): 137–144.CrossRefGoogle Scholar
  21. Peña-Aguado, F., J. Morales-Ventura, S. Nandini & S. S. S. Sarma, 2008. Influence of vertebrate and invertebrate infochemicals on the population growth and epizoic tendency of Brachionus rubens (Ehrenberg) (Rotifera: Brachionidae). Allelopathy Journal 22: 123–130.Google Scholar
  22. Pourriot, R., C. Rougier & D. Benest, 1986. Qualité de la nourriture et contrôle de la mixis chez le Rotifère Brachionus rubens, Ehr. Bulletin de la Société Zoologique de France 111(105–111): 208–209.Google Scholar
  23. Schröder, T. & E. J. Walsh, 2010. Genetic differentiation, behavioural reproductive isolation and mixis cues in three sibling species of monogonont rotifers. Freshwater Biology 55: 2570–2584.CrossRefGoogle Scholar
  24. Serra, M. & M. J. Carmona, 1993. Mixis strategies and resting egg production of rotifers living in temporally-varying habitats. Hydrobiologia 255(256): 117–126.CrossRefGoogle Scholar
  25. Serra, M. & C. E. King, 1999. Optimal rates of bisexual reproduction in cyclical parthenogens with density-dependent growth. Journal of Evolutionary Biology 12: 263–271.CrossRefGoogle Scholar
  26. Snell, T. W., 1987. Sex, population dynamics and resting egg production in rotifers. Hydrobiologia 144: 105–111.CrossRefGoogle Scholar
  27. Snell, T. W., 2011. A review of the molecular mechanisms of monogonont reproduction. Hydrobiologia 662: 89–97.CrossRefGoogle Scholar
  28. Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Canadian Journal of Fisheries and Aquatic Sciences 38: 721–724.CrossRefGoogle Scholar
  29. Viaud, G., 1947. Recherches experimentales sur les tropisms des Rotifères l’oscillorhéotropisme de Brachionus rubens Ehrenberg, cause de la fixation de ce Rotifère phorétique sur les daphnies et autres crustacés d’eau douce. Annales des Sciences Naturelles, Zoologie 9: 39–62.Google Scholar
  30. Yin, X. W., W. Jin, Y. Zhou, P. Wang & W. Zhao, 2017. Hidden defensive mor-phology in rotifers: benefits, costs, and fitness consequences. Scientific Reports 7(1): 4488.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations