Advertisement

Hydrobiologia

, Volume 844, Issue 1, pp 183–190 | Cite as

Ethanol extends lifespan of the rotifer Brachionus plicatilis

  • Takuma Udo
  • Patrick S. Guissou
  • Hideki Ushio
  • Gen KanekoEmail author
ROTIFERA XV

Abstract

Despite the increasing environmental concern about the emission of ethanol from ethanol-blended fuels, the aquatic toxicity of ethanol has not been well investigated especially at low concentrations. In this study, we aimed to investigate the effects of 0.1% ethanol on life history parameters and population dynamics of the rotifer Brachionus plicatilis by a series of culture experiments. Rotifers exposed to 0.1% ethanol lived about 20% longer and the first egg-bearing individual appeared about 30 min earlier in the ethanol-exposed group than the control group. The lifetime fecundity was approximately 1.3-fold higher in the ethanol-exposed group than the control group, but the difference was not statistically significant. Ethanol exposure also increased survival time under 0.5 mM hydrogen peroxide. Furthermore, in the batch culture experiment, the maximum population density of ethanol-exposed groups was 1.7 times higher than that of control groups. Overall, these life history alterations were similar to those in glycerol-treated rotifers previously reported, suggesting a common mechanistic basis. Identification of the mechanism of ethanol action will enable future evaluation of effects of increased ethanol release on the organisms in the aquatic environment.

Keywords

Age at first reproduction Fecundity Life history parameter Oxidative stress Population dynamics 

Notes

Acknowledgements

We thank Dr. Tatsuki Yoshinaga, Kitasato University, for his helpful discussion about the identity of Brachionus plicatilis Ishikawa strain. GK was supported by funding from M.G. and Lillie A. Johnson Foundation, Victoria, Texas and from the dean’s office at the University of Houston-Victoria.

References

  1. Bittar, T. B., S. A. Berger, L. M. Birsa, T. L. Walters, M. E. Thompson, R. G. Spencer, E. L. Mann, A. Stubbins, M. E. Frischer & J. A. Brandes, 2016. Seasonal dynamics of dissolved, particulate and microbial components of a tidal saltmarsh-dominated estuary under contrasting levels of freshwater discharge. Estuarine, Coastal and Shelf Science 182: 72–85.CrossRefGoogle Scholar
  2. Calleja, M. & G. Persoone, 1992. Cyst-based toxicity tests: 4. The potential of ecotoxicological tests for the prediction of acute toxicity in man as evaluated on the first ten chemicals of the MEIC programme. Alternatives to Laboratory Animals 20: 396–405.Google Scholar
  3. Cohen, S. M. & L. B. Ellwein, 1992. Risk assessment based on high-dose animal exposure experiments. Chemical Research in Toxicology 5: 742–748.CrossRefGoogle Scholar
  4. Godoy-Silva, D., R. F. Nogueira & M. L. A. Campos, 2017. A 13-year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning. Science of the Total Environment 609: 476–483.CrossRefGoogle Scholar
  5. Gribble, K. E. & D. B. Mark Welch, 2013. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera). The Journals of Gerontology Series A 68: 349–358.CrossRefGoogle Scholar
  6. Gribble, K. E., G. Jarvis, M. Bock & D. B. Mark Welch, 2014a. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring. Aging Cell 13: 623–630.CrossRefGoogle Scholar
  7. Gribble, K. E., O. Kaido, G. Jarvis & D. B. Mark Welch, 2014b. Patterns of intraspecific variability in the response to caloric restriction. Experimental Gerontology 51: 28–37.CrossRefGoogle Scholar
  8. Janssen, C. & G. Persoone, 1993. Rapid toxicity screening tests for aquatic biota 1. Methodology and experiments with Daphnia magna. Environmental Toxicology and Chemistry 12: 711–717.Google Scholar
  9. Kailasam, M., G. Kaneko, A. K. S. Oo, Y. Ozaki, A. R. Thirunavukkarasu & S. Watabe, 2011. Effects of calorie restriction on the expression of manganese superoxide dismutase and catalase under oxidative stress conditions in the rotifer Brachionus plicatilis. Fisheries Science 77: 403–409.CrossRefGoogle Scholar
  10. Kaneko, G., T. Yoshinaga, Y. Yanagawa, S. Kinoshita, K. Tsukamoto & S. Watabe, 2005. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia 546: 117–123.CrossRefGoogle Scholar
  11. Kaneko, G., T. Yoshinaga, Y. Yanagawa, Y. Ozaki, K. Tsukamoto & S. Watabe, 2011. Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer. Functional Ecology 25: 209–216.CrossRefGoogle Scholar
  12. Kaneko, G., T. Yoshinaga, K. E. Gribble, D. Mark Welch & H. Ushio, 2016. Measurement of survival time in Brachionus rotifers: synchronization of maternal conditions. Journal of Visualized Experiments 113: e54126.Google Scholar
  13. Kirstine, W. V. & I. E. Galbally, 2012. Ethanol in the environment: a critical review of its roles as a natural product, a biofuel, and a potential environmental pollutant. Critical Reviews in Environmental Science and Technology 42: 1735–1779.CrossRefGoogle Scholar
  14. Manzetti, S. & O. Andersen, 2015. A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel 140: 293–301.CrossRefGoogle Scholar
  15. Marjonen, H., M. Toivonen, L. Lahti & N. Kaminen-Ahola, 2018. Early prenatal alcohol exposure alters imprinted gene expression in placenta and embryo in a mouse model. PLoS ONE 13: e0197461.CrossRefGoogle Scholar
  16. Martins, J., L. O. Teles & V. Vasconcelos, 2007. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International 33: 414–425.CrossRefGoogle Scholar
  17. Mullaugh, K. M., M. S. Shimizu, J. D. Willey, J. D. Felix, R. J. Kieber, G. B. Avery Jr., R. N. Mead, C. Andreacchi & A. Payne, 2018. Variability of ethanol concentration in rainwater driven by origin versus season in coastal and inland North Carolina, USA. Chemosphere 195: 793–799.CrossRefGoogle Scholar
  18. Netzeva, T. I. & T. W. Schultz, 2005. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere 61: 1632–1643.CrossRefGoogle Scholar
  19. Oo, A. K. S., G. Kaneko, M. Hirayama, S. Kinoshita & S. Watabe, 2010. Identification of genes differentially expressed by calorie restriction in the rotifer (Brachionus plicatilis). Journal of Comparative Physiology 180B: 105–116.CrossRefGoogle Scholar
  20. Oshiro, W., T. Beasley, K. McDaniel, M. Taylor, P. Evansky, V. Moser, M. Gilbert & P. Bushnell, 2014. Selective cognitive deficits in adult rats after prenatal exposure to inhaled ethanol. Neurotoxicology and Teratology 45: 44–58.CrossRefGoogle Scholar
  21. Ozaki, Y., G. Kaneko, Y. Yanagawa & S. Watabe, 2010. Calorie restriction in the rotifer Brachionus plicatilis enhances hypoxia tolerance in association with the increased mRNA levels of glycolytic enzymes. Hydrobiologia 649: 267–277.CrossRefGoogle Scholar
  22. Patananan, A. N., L. M. Budenholzer, A. Eskin, E. R. Torres & S. G. Clarke, 2015. Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Experimental Gerontology 61: 20–30.CrossRefGoogle Scholar
  23. Pesch, B., A. Spickenheuer, D. Taeger & T. Brüning, 2009. Low-dose extrapolation in toxicology: an old controversy revisited. Archives of Toxicology 83: 639–640.CrossRefGoogle Scholar
  24. Roebuck, J. A., G. B. Avery, J. D. Felix, R. J. Kieber, R. N. Mead & S. A. Skrabal, 2016. Biogeochemistry of ethanol and acetaldehyde in freshwater sediments. Aquatic Geochemistry 22: 177–195.CrossRefGoogle Scholar
  25. Sakami, T., M. Koiso & T. Sugaya, 2014. Characterization of bacterial community composition in rotifer cultures under unexpected growth suppression. Fisheries Science 80: 757–765.CrossRefGoogle Scholar
  26. Skjermo, J. & O. Vadstein, 1993. Characterization of the bacterial flora of mass cultivated Brachionus plicatilis. Hydrobiologia 255: 185–191.CrossRefGoogle Scholar
  27. Snell, T. W. & C. R. Janssen, 1995. Rotifers in ecotoxicology: A review. Hydrobiologia 313: 231–247.CrossRefGoogle Scholar
  28. Snell, T. W. & C. Joaquim-Justo, 2007. Workshop on rotifers in ecotoxicology. Hydrobiologia 593: 227–232.CrossRefGoogle Scholar
  29. Snell, T. W. & R. K. Johnston, 2014. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Experimental Gerontology 57: 47–56.CrossRefGoogle Scholar
  30. Snell, T. W., R. K. Johnston, B. Rabeneck, C. Zipperer & S. Teat, 2014. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Experimental Gerontology 52: 55–69.CrossRefGoogle Scholar
  31. Starmer, W. T., W. B. Heed & E. Rockwood-Sluss, 1977. Extension of longevity in Drosophila mojavensis by environmental ethanol: differences between subraces. Proceedings of the National Academy of Sciences USA 74: 387–391.CrossRefGoogle Scholar
  32. Yoshinaga, T., G. Kaneko, S. Kinoshita, K. Tsukamoto & S. Watabe, 2003. The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comparative Biochemistry and Physiology Part B 136B: 715–722.CrossRefGoogle Scholar
  33. Yoshinaga, T., Y. Minegishi, I. F. M. Rumengan, G. Kaneko, S. Furukawa, Y. Yanagawa, K. Tsukamoto & S. Watabe, 2004. Molecular phylogeny of the rotifers with two Indonesian Brachionus linages. Coastal Marine Science 29: 45–56.Google Scholar
  34. Yoshinaga, T., G. Kaneko, S. Kinoshita, S. Furukawa, K. Tsukamoto & S. Watabe, 2005. Insulin-like growth factor signaling pathway involved in regulating longevity of rotifers. Hydrobiologia 546: 347–352.CrossRefGoogle Scholar
  35. Yu, J.-P. & K. Hirayama, 1986. The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Nippon Suisan Gakkaishi 52: 1509–1513.CrossRefGoogle Scholar
  36. Yu, X., W. Zhao, J. Ma, X. Fu & Z. J. Zhao, 2011. Beneficial and harmful effects of alcohol exposure on Caenorhabditis elegans worms. Biochemical and Biophysical Research Communications 412: 757–762.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Aquatic Bioscience, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.School of Arts and SciencesUniversity of Houston-VictoriaVictoriaUSA

Personalised recommendations