, Volume 844, Issue 1, pp 209–219 | Cite as

Systematic distribution of birefringent bodies in Rotifera and first evidence of their ultrastructure in Acyclus inquietus (Gnesiotrocha: Collothecaceae)

  • Hui Yang
  • Rick HochbergEmail author
  • Elizabeth J. Walsh
  • Robert L. Wallace


Small birefringent concretions have been reported in rotifers for over a century and often hypothesized as energy sources. Here, we provide an update on their distribution in superorder Gnesiotrocha and the first data on their ultrastructure. Within Gnesiotrocha, these birefringent bodies (BRB) are known from at least ten species of Collothecaceae and 14 species of Flosculariaceae, both of which include planktonic and sessile species. Among sessile species, the predator Acyclus inquietus contains a single BRB that has been described as starch-like. We examined larvae of A. inquietus with transmission electron microscopy and revealed the BRB to have an irregular, electron-dense margin that surrounds a speckled core. The core appears mostly amorphous, but contains numerous, very small electron-dense spots and thin electron-dense fibers; there is no evidence of any crystalline lattice. The intestinal lumen contains smaller concretions that are probably the result of BRB metabolism. The thin epithelium contains abundant electron-dense granules but relatively few organelles. We hypothesize that the BRB is a unique form of extracellular glycogen that functions as an energy source in larvae for their dispersal and metamorphosis. In adult A. inquietus, the BRB may provide energy permitting reproduction when prey are no longer available.


Anisotropic Glycogen Indirect life cycle Lecithotrophic Planktonic Sessile 



We thank the editor and two anonymous reviewers for critical comments that dramatically improved this manuscript. We also thank the participants of the Rotifera XV Symposium for their ideas on the topic of birefringent bodies. We acknowledge the staff at the Core Electron Microscope Facility (UMM) for their assistance in the use of their TEM. Collections at Hueco Tanks State Park and Historic Site were made under Texas Parks and Wildlife permit TPWD 2016-03 (E.J. Walsh). Kevin Bixby facilitated sampling at La Mancha Wetland. Funding was provided from the National Science Foundation (NSF), DEB Grants 1257110 (R. Hochberg), 1257068 (E.J. Walsh), and 1257116 (R.L. Wallace), and by Grant 5G12MD007592 (E.J. Walsh) from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or NIH.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Buchner, H., L. Tiefenbacher, R. Kling & K. Preissler, 1970. Über die physiologische Bedeutung des Magen–Darm– Rudimentes der Männchen von Asplanchna sieboldi (Rotatoria, Monogononta). Journal of Comparative Physiology A 67: 453–454.Google Scholar
  2. de Beauchamp, P., 1909. Recherches sur les Rotifères: les formations tegumentaires et l’appareil digestif. Archives Zoologie Experimental et General, series 4(10): 1–410.Google Scholar
  3. de Beauchamp, P., 1912. Rotifères communiqués par H. K. Harring et C. F. Rousselet: contributions a l’étude des Atrochidés. Bulletin de la Société zoologique de France 37: 242–254.CrossRefGoogle Scholar
  4. Donner, P. J., 1964. Die Rotatorien-Synusien submerser Makrophyten der Donau bei Wien und mehrerer Alpenbäche. Veröffentlichungen der Arbeitsgemeinschaft Donauforschung 1(3): 227–324.CrossRefGoogle Scholar
  5. Hochberg, R., S. O’Brien & A. Puleo, 2010. Behavior, metamorphosis and muscular organization of the predatory rotifer, Acyclus inquietus (Rotifera, Monogononta). Invertebrate Biology 129(3): 210–219.CrossRefGoogle Scholar
  6. Hochberg, A. & R. Hochberg, 2017. Musculature of the sessile rotifer Stephanoceros fimbriatus (Rotifera: Gnesiotrocha: Collothecaceae) with details on larval metamorphosis and development of the infundibulum. Zoologischer Anzeiger 268: 8495.CrossRefGoogle Scholar
  7. Hudson, C. T., 1883. Five new Floscules; with a note on Prof. Leidy’s genera of Acyclus and Dictyophora. Journal of the Royal Microscopical Society Series II 3: 161–171.CrossRefGoogle Scholar
  8. Hudson, C. T. & P. H. Gosse, 1886. The Rotifera; or Wheel-Animalcules, Both British and Foreign. Longmans, Green, and Co., London.CrossRefGoogle Scholar
  9. Hünerhoff, E., 1931. Ober ein bisher unbekanntes Larvenorgan and die Regeneration bei dem Radertier Apsilus vorax. Zoolgicher Anzeiger 92: 327–332.Google Scholar
  10. Joliet, L., 1883. Monographie des Melicertes. Archives de Zoologie Expérimentale et Générale 2(131–122): 11–13.Google Scholar
  11. Koste, W., 1974. Zur Kenntnis der Rotatorienfauna der “Schwimmenden Wiese” einer Uferlagune in der Varzea Amazoniens, Brasilien. Amazoniana 5: 25–60.Google Scholar
  12. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas, Vol. 2. Gebrüder Borntraeger, Stuttgart.Google Scholar
  13. Kutikova, L. A., 1995. Larval metamorphosis in sessile rotifers. Hydrobiologia 313(314): 133–138.CrossRefGoogle Scholar
  14. Leidy, J., 1882. Rotifera without rotary organs. Proceedings of the Academy of Natural Science of Philadelphia 34: 243–250.Google Scholar
  15. Milne, W., 1905. On the function of the water vascular system in Rotifera, with notes on some South African Floscularia. Royal Philosophical Society of Glasgow 36: 127–188.Google Scholar
  16. Noma, K., A. Goncharova, M. H. Ellisman & J. Yishi, 2017. Micritubule-dependent ribosome localization in C. elegans neurons. eLIFE 6: e26376.CrossRefGoogle Scholar
  17. Penard, E., 1914. A propos rotifères. Revue Suisse de Zoologie 22: 1–25.CrossRefGoogle Scholar
  18. Prats, C., T. E. Graham & J. Shearer, 2018. The dynamic life of the glycogen granule. Journal of Biological Chemistry 293: 7089–7098.CrossRefGoogle Scholar
  19. Revel, J. P., 1964. Electron microscopy of glycogen. Journal of Histochemistry and Cytochemistry 12(2): 104–114.CrossRefGoogle Scholar
  20. Revel, J. P., L. Napolitano, & D. W. Fawcett, 1960. Identification of glycogen in electron micrographs of thin tissue sections. The Journal of Biophysical and Biochemical Cytology 8: 575–589.CrossRefGoogle Scholar
  21. Rousselet, C. F., 1892. On Conochilus unicornis and Euchlanis parva—two new rotifers. Journal of the Quekett Microscopical Club 4: 367–370.Google Scholar
  22. Sullivan, M. A., F. Vilaplana, R. A. Cave, D. Stepleton, A. A. Gray-Weale & R. G. Gilbert, 2010. Nature of & #x03B1; and ß particles of glycogen using molecular size distributions. Biomacromolecules 11: 1094–1100.CrossRefGoogle Scholar
  23. Suprenant, K. A., 1993. Microtubules, ribosomes, and RNA: evidence for cytoplasmic localization and translational regulation. Cell Motility and the Cytoskeleton 25: 1–9.CrossRefGoogle Scholar
  24. Vournakis, J. & A. Rich, 1971. Size changes in eukaryotic ribosomes. Proceedings of the National Academy of Science USA 68: 3021–3025.CrossRefGoogle Scholar
  25. Wallace, R. L., 1975. Larval behavior of the sessile rotifer Ptygura beauchampi (Edmondson). Verhandlungen Internationale Vereinigung Limnologie 19: 2811–2815.Google Scholar
  26. Wallace, R. L., 1993. Presence of anisotropic (birefringent) crystalline structures in embryonic and juvenile monogonont rotifers. Hydrobiologia 255(256): 71–76.CrossRefGoogle Scholar
  27. Weber, E.-F., 1888. Notes sur quelques Rotateurs des environs de Genève. Archive de Biologie 8(647–722): 26–36.Google Scholar
  28. Williamson, W. C., 1853. On the anatomy of Melicerta ringens. Quarterly Journal of Microscopical Science 1(3–8): 64–71.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Massachusetts LowellLowellUSA
  2. 2.Department of Biological SciencesUniversity of TexasEl PasoUSA
  3. 3.Department of BiologyRipon CollegeRiponUSA

Personalised recommendations