, Volume 827, Issue 1, pp 277–291 | Cite as

Identification of an endemic Mediterranean brown trout mtDNA group within a highly perturbed aquatic system, the Llobregat River (NE Spain)

  • M. VeraEmail author
  • C. Bouza
  • A. Casanova
  • S. Heras
  • P. Martínez
  • J. L. García-Marín
Primary Research Paper


Brown trout (Salmo trutta L.) is an important resource both for conservation and recreational fisheries in Iberian Peninsula, but the species is threatened in Llobregat River, an important river drainage in Catalonia (NE Spain), due to the high anthropological influence. In order to ascertain the native genetic diversity, phylogenetic relationships, population structure and stocking impact in this drainage, 295 individuals collected from eight different locations distributed throughout the main river course and the main tributary (i.e. Llobregat River and Cardener River, respectively) were analysed for the period 1990–2017. The complete mitochondrial DNA (mtDNA) control region and the LDH-C* diagnostic locus for monitoring the stocking were analysed. Moderate-high levels of genetic introgression were detected (frequency ~ 0.300), affecting especially the main course. Despite the stocking introgression and the expected genetic depletion by genetic drift due to population isolation, a new mtDNA haplotype group pertaining to the Mediterranean lineage was found restricted to the Cardener River. This haplogroup is responsible of the high population differentiation observed between rivers in the Llobregat drainage (ΦCT = 0.456, P < 0.001) and highlights the conservation interest of that region. Management strategies to achieve fisheries sustainability and conserve endemic resources in the region are proposed.


Mediterranean brown trout Phylogeography Iberian Peninsula Stocking impact Conservation 



Authors wish to thank M. López, S. Sánchez-Darriba and S. Gómez for their laboratory support; E. Aparicio for his fieldwork; and J. Ruiz, C. Marchante and J. Capdevila from the Inland Fisheries Service of the Generalitat de Catalunya Autonomous Government (Spain) for their technical advice. Authors are also indebted with Prof. M. Power and two anonymous reviewers for their constructive comments on the earlier version of this manuscript. A. Casanova was funded by a predoctoral reasearch fellowship from Xunta de Galicia Autonomous Government (Spain). This study has been supported by Spanish Science and Technology Ministry projects (REN2000-0740-C02-01; REN2003-05931/GLO), University of Girona project (MPCUdG2016/060), Generalitat de Catalunya (Spain) contracts (AMB/acs/itt 2001-3; AG-2017-617) and Xunta de Galicia project (GRC2014/010).


  1. ACA, 2017. Connectivitat longitudinal als rius de les Conques Internes de Catalunya. Estructures presents als rius i actuacions de millora realitzades. Agència Catalana de l’Aigua, Departament de Territori i Sostenibilitat, Generalitat de Catalunya, Barcelona.Google Scholar
  2. Allendorf, F. W., R. F. Leary, N. P. Hitt, K. L. Knudsen, L. L. Lundquist & P. Spruell, 2004. Intercrosses and the US Endangered Species Act: should hybridized populations be included as Westslope cutthroat trout? Conservation Biology 18: 1203–1213.CrossRefGoogle Scholar
  3. Almodovar, A., G. G. Nicola, B. Elvira & J. L. García-Marín, 2006. Introgression variability among Iberian brown trout Evolutionary Significant Units: the influence of local management and environmental features. Freshwater Biology 51: 1175–1187.CrossRefGoogle Scholar
  4. Almodovar, A., G. G. Nicola, D. Ayllon & B. Elvira, 2012. Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology 18: 1549–1560.CrossRefGoogle Scholar
  5. Aparicio, E., E. Garcia-Berthou, R. M. Araguas, P. Martinez & J. L. García-Marín, 2005. Body pigmentation pattern to assess introgression by hatchery stocks in native Salmo trutta from Mediterranean streams. Journal of Fish Biology 67: 931–949.CrossRefGoogle Scholar
  6. Araguas, R. M., N. Sanz, R. Fernandez, F. M. Utter, C. Pla & J. L. García-Marín, 2008. Genetic refuges for a self-sustained fishery: experience in wild brown trout populations in the eastern Pyrenees. Ecology of Freshwater Fish 17: 610–616.CrossRefGoogle Scholar
  7. Araguas, R. M., N. Sanz, R. Fernandez-Cebrian, F. M. Utter, C. Pla & J. L. García-Marín, 2009. Role of genetic refuges in the restoration of native gene pools of brown trout. Conservation Biology 23: 871–878.CrossRefGoogle Scholar
  8. Araguas, R. M., M. Vera, E. Aparicio, N. Sanz, R. Fernandez-Cebrian, C. Marchante & J. L. García-Marín, 2017. Current status of the brown trout (Salmo trutta) populations within eastern Pyrenees genetic refuges. Ecology of Freshwater Fish 26: 120–132.CrossRefGoogle Scholar
  9. Arthington, A. H., N. K. Dulvy, W. Gladstone & I. J. Winfield, 2016. Fish conservation in freshwater and marine realms: status, threats and management. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 838–857.CrossRefGoogle Scholar
  10. Bandelt, H. J., P. Forster & A. Rohl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.CrossRefGoogle Scholar
  11. Bernas, R., A. Burzynski, P. Debowski, A. Pocwierz-Kotus & R. Wenne, 2014. Genetic diversity within sea trout population from an intensively stocked southern Baltic river, based on microsatellite DNA analysis. Fisheries Management and Ecology 21: 398–409.CrossRefGoogle Scholar
  12. Bernatchez, L., 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379.CrossRefGoogle Scholar
  13. Berrebi, P., D. Jesenek & A. Crivelli, 2017. Natural and domestic introgressions in the marble trout population of Soa River (Slovenia). Hydrobiologia 785: 277–291.CrossRefGoogle Scholar
  14. Bouza, C., R. Vilas, J. Castro & P. Martínez, 2008. Mitochondrial haplotype variability of brown trout populations from Northwestern Iberian Peninsula, a secondary contact area between lineages. Conservation Genetics 9: 917–920.CrossRefGoogle Scholar
  15. Cortey, M. & J. L. García-Marín, 2002. Evidence for phylogeographically informative sequence variation in the mitochondrial control region of Atlantic brown trout. Journal of Fish Biology 60: 1058–1063.CrossRefGoogle Scholar
  16. Cortey, M., C. Pla & J. L. García-Marín, 2004. Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution 33: 831–844.CrossRefGoogle Scholar
  17. Cortey, M., M. Vera, C. Pla & J. L. García-Marín, 2009. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biological Journal of the Linnean Society 97: 904–917.CrossRefGoogle Scholar
  18. Dahl-Jensen, D., M. R. Albert, A. Aldahan, N. Azuma, D. Balslev-Clausen, M. Baumgartner, A. M. Berggren, M. Bigler, T. Binder, T. Blunier, J. C. Bourgeois, E. J. Brook, S. L. Buchardt, C. Buizert, E. Capron, J. Chappellaz, J. Chung, H. B. Clausen, I. Cvijanovic, S. M. Davies, P. Ditlevsen, O. Eicher, H. Fischer, D. A. Fisher, L. G. Fleet, G. Gfeller, V. Gkinis, S. Gogineni, K. Goto-Azuma, A. Grinsted, H. Gudlaugsdottir, M. Guillevic, S. B. Hansen, M. Hansson, M. Hirabayashi, S. Hong, S. D. Hur, P. Huybrechts, C. S. Hvidberg, Y. Iizuka, T. Jenk, S. J. Johnsen, T. R. Jones, J. Jouzel, N. B. Karlsson, K. Kawamura, K. Keegan, E. Kettner, S. Kipfstuhl, H. A. Kjaer, M. Koutnik, T. Kuramoto, P. Koehler, T. Laepple, A. Landais, P. L. Langen, L. B. Larsen, D. Leuenberger, M. Leuenberger, C. Leuschen, J. Li, V. Lipenkov, P. Martinerie, O. J. Maselli, V. Masson-Delmotte, J. R. McConnell, H. Miller, O. Mini, A. Miyamoto, M. Montagnat-Rentier, R. Mulvaney, R. Muscheler, A. J. Orsi, J. Paden, C. Panton, F. Pattyn, J. R. Petit, K. Pol, T. Popp, G. Possnert, F. Prie, M. Prokopiou, A. Quiquet, S. O. Rasmussen, D. Raynaud, J. Ren, C. Reutenauer, C. Ritz, T. Rockmann, J. L. Rosen, M. Rubino, O. Rybak, D. Samyn, C. J. Sapart, A. Schilt, A. M. Z. Schmidt, J. Schwander, S. Schuepbach, I. Seierstad, J. P. Severinghaus, et al., 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493: 489–494.CrossRefGoogle Scholar
  19. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedPubMedCentralGoogle Scholar
  20. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1: 47–50.CrossRefGoogle Scholar
  21. Fabiani, A., P. Gratton, I. A. Zappes, M. Seminara, A. D’Orsi, V. Sbordoni & G. Allegrucci, 2018. Investigating the genetic structure of trout from the Garden of Ninfa (central Italy): suggestions for conservation and management. Fisheries Management and Ecology 25: 1–11.CrossRefGoogle Scholar
  22. Fernandez-Cebrian, R., R. M. Araguas, N. Sanz & J. L. García-Marín, 2014. Genetic risks of supplementing trout populations with native stocks: a simulation case study from current Pyrenean populations. Canadian Journal of Fisheries and Aquatic Sciences 71: 1243–1255.CrossRefGoogle Scholar
  23. Frankham, R., J. D. Ballou & D. A. Briscoe, 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  24. Fumagalli, L., A. Snoj, D. Jesensek, F. Balloux, T. Jug, O. Duron, F. Brossier, A. J. Crivelli & P. Berrebi, 2002. Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Molecular Ecology 11: 2711–2716.CrossRefGoogle Scholar
  25. García-Marín, J. L., P. E. Jorde, N. Ryman, F. Utter & C. Pla, 1991. Management implications of genetic differentiation between native and hatchery populations of brown trout (Salmo trutta) in Spain. Aquaculture 95: 235–249.CrossRefGoogle Scholar
  26. García-Marín, J. L., R. M. Araguas, M. Vera & N. Sanz, 2017. Understanding the brown trout population genetic structure in the Iberian Peninsula. In Lobón-Cerviá, J. & N. Sanz (eds), Brown Trout: biology, ecology and management. Wiley, Chichester: 103–126.CrossRefGoogle Scholar
  27. Gonzalez, S., R. Lopez-Roldan & J. L. Cortina, 2012. Presence and biological effects of emerging contaminants in Llobregat River basin: a review. Environmental Pollution 161: 83–92.CrossRefGoogle Scholar
  28. Hansen, M. M., D. Bekkevold, L. F. Jensen, K. L. D. Mensberg & E. E. Nielsen, 2006. Genetic restoration of a stocked brown trout Salmo trutta population using microsatellite DNA analysis of historical and contemporary samples. Journal of Applied Ecology 43: 669–679.CrossRefGoogle Scholar
  29. Hansen, M. M., D. J. Fraser, K. Meier & K. L. D. Mensberg, 2009. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Molecular Ecology 18: 2549–2562.CrossRefGoogle Scholar
  30. Jadan, M., I. Strunjak-Perovic, N. Topic-Popovic & R. Coz-Rakovac, 2015. Three major phylogenetic lineages of brown trout (Salmo trutta Linnaeus, 1758) in the Krka River system (Croatia) revealed by complete mitochondrial DNA control region sequencing. Journal of Applied Ichthyology 31: 192–196.CrossRefGoogle Scholar
  31. Kohout, J., I. Jaskova, I. Papousek, A. Sediva & V. Slechta, 2012. Effects of stocking on the genetic structure of brown trout, Salmo trutta, in Central Europe inferred from mitochondrial and nuclear DNA markers. Fisheries Management and Ecology 19: 252–263.CrossRefGoogle Scholar
  32. Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.CrossRefGoogle Scholar
  33. Marce, R., J. Honey-Roses, A. Manzano, L. Moragas, B. Catllar & S. Sabater, 2012. The Llobregat River basin: a paradigm of impaired rivers under climate change threats. The Handbook of Environmental Chemistry 21: 1–26.CrossRefGoogle Scholar
  34. Maric, S., O. Askeyev, A. Askeyev, S. Monakhov, N. Yanybaev, I. Askeyev, D. Galimova & A. Snoj, 2016. Lack of mtDNA variation among remote middle Volga and upper Ural brown trout suggests recent and rapid recolonization. Journal of Applied Ichthyology 32: 948–953.CrossRefGoogle Scholar
  35. Maric, S., S. S. Bajec, J. Schoffmann, V. Kostov & A. Snoj, 2017. Phylogeography of stream-dwelling trout in the Republic of Macedonia and a molecular genetic basis for revision of the taxonomy proposed by S. Karaman. Hydrobiologia 785: 249–260.CrossRefGoogle Scholar
  36. McDermid, J. L., S. Nienhuis, M. Al-Shamlih, T. J. Haxton & C. C. Wilson, 2014. Evaluating the genetic consequences of river fragmentation in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. Journal of Applied Ichthyology 30: 1514–1523.CrossRefGoogle Scholar
  37. McMeel, O. M., E. M. Hoey & A. Ferguson, 2001. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and*100 alleles. Molecular Ecology 10: 29–34.CrossRefGoogle Scholar
  38. Meraner, A., S. Baric, B. Pelster & J. Dalla Via, 2007. Trout (Salmo trutta) mitochondrial DNA polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579: 337–349.CrossRefGoogle Scholar
  39. Moore, W. S., 1995. Inferring phylogenies from mtDNA variation mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718–726.PubMedGoogle Scholar
  40. Muñoz, M. & M. Casadevall, 1997. Fish remains from Arbreda Cave (Serinyà Girona), northeast Spain, and their palaeoecological significance. Journal of Quaternary Science 12: 111–115.CrossRefGoogle Scholar
  41. Nei, M. & F. Tajima, 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163.PubMedPubMedCentralGoogle Scholar
  42. Nonnis Marzano, F., N. Corradi, R. Papa, J. Tagliavini, F. N. Marzano & G. Gandolfi, 2003. Molecular evidence for introgression and loss of genetic variability in Salmo (trutta) macrostigma as a result of massive restocking of Apennine populations (Northern and Central Italy). Environmental Biology of Fishes 68: 349–356.CrossRefGoogle Scholar
  43. Ormerod, S. J., 2009. Climate change, river conservation and the adaptation challenge. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 609–613.CrossRefGoogle Scholar
  44. Pfenninger, M. & D. Posada, 2002. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 56: 1776–1788.CrossRefGoogle Scholar
  45. Prat, N. & M. Rieradevall, 2006. 25-years of biomonitoring in two Mediterranean streams (Llobregat and Besòs basins, NE Spain). Limnetica 25: 541–550.Google Scholar
  46. Rasmussen, G., 1986. The population dynamics of brown trout (Salmo trutta L.) in relation to year-class size. Polskie Archiwum Hydrobiologii 33: 489–508.Google Scholar
  47. Rousset, F., 2008. GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.CrossRefGoogle Scholar
  48. Ryman, N., F. Utter & L. Laikre, 1995. Protection of intraspecific biodiversity of exploited fishes. Reviews in Fish Biology and Fisheries 5: 417–446.CrossRefGoogle Scholar
  49. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  50. Sanz, N., J. L. García-Marín & C. Pla, 2002. Managing fish populations under mosaic relationships. The case of brown trout (Salmo trutta) in peripheral Mediterranean populations. Conservation Genetics 3: 385–400.CrossRefGoogle Scholar
  51. Sanz, N., M. Cortey, C. Pla & J. L. García-Marín, 2006. Hatchery introgression blurs ancient hybridization between brown trout (Salmo trutta) lineages as indicated by complementary allozymes and mtDNA markers. Biological Conservation 130: 278–289.CrossRefGoogle Scholar
  52. Saura, M. & R. Faria, 2011. Genetic tools for restoration of fish populations. Journal of Applied Ichthyology 27: 5–15.CrossRefGoogle Scholar
  53. Schenekar, T., E. Lerceteau-Koehler & S. Weiss, 2014. Fine-scale phylogeographic contact zone in Austrian brown trout Salmo trutta reveals multiple waves of post-glacial colonization and a pre-dominance of natural versus anthropogenic admixture. Conservation Genetics 15: 561–572.CrossRefGoogle Scholar
  54. Snoj, A., I. Bogut & S. Susnik, 2008. Evidence of a genetically distinct population of Vrljika softmouth trout Salmo obtusirostris Heckel evolved by vicariance. Journal of Fish Biology 72: 1945–1959.CrossRefGoogle Scholar
  55. Soler, A., A. Canals, S. L. Goldstein, N. Otero, N. Antich & J. Spangenberg, 2002. Sulfur and strontium isotope composition of the Llobregat river (NE Spain): tracers of natural and anthropogenic chemicals in streams waters. Water, Air, and Soil Pollution 136: 207–224.CrossRefGoogle Scholar
  56. Sonstebo, J. H., R. Borgstrom & M. Heun, 2008. High genetic introgression in alpine brown trout (Salmo trutta L.) populations from Hardangervidda, Norway. Ecology of Freshwater Fish 17: 174–183.CrossRefGoogle Scholar
  57. Sostoa, A., N. M. Caiola, F. Casals, E. Garcia-Berthou, C. Alcaraz, L. Benejam, A. Maceda, C. Solà & A. Munné, 2010. Ajust de l’Index d’Integritat Biològica (IBICAT) basat en l’ús dels peixos com a indicadors de la qualitat ambiental als rius de Catalunya. Agència Catalana de l’Aigua, Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona.Google Scholar
  58. Splendiani, A., M. Giovannotti, P. N. Cerioni, M. L. Caniglia & V. Caputo, 2006. Phylogeographic inferences on the native brown trout mtDNA variation in central Italy. Italian Journal of Zoology 73: 179–189.CrossRefGoogle Scholar
  59. Splendiani, A., P. Ruggeri, M. Giovannotti & V. Caputo, 2013. Role of environmental factors in the spread of domestic trout in Mediterranean streams. Freshwater Biology 58: 2089–2101.CrossRefGoogle Scholar
  60. Splendiani, A., P. Ruggeri, M. Giovannotti, S. Pesaresi, G. Occhipinti, T. Fioravanti, M. Lorenzoni, P. Nisi Cerioni & V. Caputo Barucchi, 2016. Alien brown trout invasion of the Italian peninsula: the role of geological, climate and anthropogenic factors. Biological Invasions 18: 2029–2044.CrossRefGoogle Scholar
  61. Suarez, J., J. M. Bautista, A. Almodovar & A. Machordom, 2001. Evolution of the mitochondrial control region in Palaearctic brown trout (Salmo trutta) populations: the biogeographical role of the Iberian Peninsula. Heredity 87: 198–206.CrossRefGoogle Scholar
  62. Susnik, S., J. Schoffmann & S. Weiss, 2005. Genetic verification of native brown trout from the Persian Gulf (Catak Cay River, Tigris basin). Journal of Fish Biology 67: 879–884.CrossRefGoogle Scholar
  63. Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.PubMedGoogle Scholar
  64. Trigo, R. M., D. Pozo-Vazquez, T. J. Osborn, Y. Castro-Diez, S. Gamiz-Fortis & M. J. Esteban-Parra, 2004. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24: 925–944.CrossRefGoogle Scholar
  65. Vera, M., M. Cortey, N. Sanz & J. L. García-Marín, 2010. Maintenance of an endemic lineage of brown trout (Salmo trutta) within the Duero river basin. Journal of Zoological Systematics and Evolutionary Research 48: 181–187.CrossRefGoogle Scholar
  66. Vera, M., J. L. García-Marín, P. Martínez, R. M. Araguas & C. Bouza, 2013. Identification and conservation of remnant genetic resources of brown trout in relict populations from Western Mediterranean streams. Hydrobiologia 707: 29–45.CrossRefGoogle Scholar
  67. Vera, M., J. L. García-Marín, P. Martínez & C. Bouza, 2015. Phylogenetic diversity within the endemic brown trout Duero lineage: implications for conservation and management. Marine and Freshwater Research 66: 1066–1071.CrossRefGoogle Scholar
  68. Vera, M., P. Martínez & C. Bouza, 2018. Stocking impact, population structure and conservation of wild brown trout populations in inner Galicia (NW Spain), an unstable hydrologic region. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 435–443.CrossRefGoogle Scholar
  69. Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. CHELEX-100 as a medium for simple extraction of dna for pcr-based typing from forensic material. Biotechniques 10: 506–513.PubMedGoogle Scholar
  70. Weiss, S. & S. Schmutz, 1999. Performance of hatchery-reared brown trout and their effects on wild fish in two small Austrian streams. Transactions of the American Fisheries Society 128: 302–316.CrossRefGoogle Scholar
  71. WWF, 2016. Living Planet Report 2016. Risk and resilience in a new era. WWF International, Gland.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Zoología, Genética y Antropología Física, Faculty of VeterinaryUniversidade de Santiago de CompostelaLugoSpain
  2. 2.Laboratori d’Ictiologia Genètica, Departamento de Biología, Faculty of SciencesUniversity of GironaGironaSpain

Personalised recommendations