Reproductive allocation by Amazon fishes in relation to feeding strategy and hydrology

  • Cristhiana P. Röpke
  • Tiago H. S. Pires
  • Kirk O. Winemiller
  • Daniela de Fex Wolf
  • Claudia P. Deus
  • Sidinéia Amadio
Primary Research Paper


Seasonal environments favor the evolution of capital breeding, whereby reproduction uses surplus energy from resources acquired during an earlier period. Consequently, reproductive effort in capital breeders is expected to depend on traits associated with energy storage rather than environmental conditions at the time of reproduction. Based on a 15-year dataset, we investigate the effect of phenotype (body size and condition) and environmental conditions (intensity of hydrological seasons, predator density, and density of conspecifics) on fecundity three capital breeding fish species from the strongly seasonal Amazon River floodplain: Psectrogaster rutiloides, Triportheus angulatus, and Acestrorhynchus falcirostris. Fecundity of all three species was strongly correlated with phenotype and modulated by unfavorable environmental conditions during the period of reproduction, especially high density of conspecifics. Fecundity was negatively affected by the density of conspecifics for small females of A. falcirostris, and for T. angulatus females with poor body condition. Fecundity of P. rutiloides declined during periods of drought when density of conspecifics was highest. A clear tradeoff between quantity and quality of oocytes was found only for P. rutiloides. This study highlights that reproductive allocation of capital breeders in seasonal environments is strongly linked to environmental conditions before and during the reproductive period.


Costs of reproduction Context-dependent investment Body condition Density dependence Environmental conditions Tradeoff 



We thank the students, volunteers, fishermen, and Raimundo Sotero who helped in the field and laboratory over more than one decade of study. We also thank the two anonymous reviewers and Joel Trexler for their valuable comments.

Author contribution

CPR, KW, and SA conceived the idea; CPR, DWF, CPD, and SA obtained the data; CPR and THSP analyzed the data; CPR, THSP, and KW wrote the manuscript; and all authors provided editorial advice. All authors contributed significantly to the paper and approved the submitted version.


This study was funded by the Amazonas State Research Funding Agency (FAPEAM 062003342013), Brazilian National Council for Scientific and Technological Development (CNPq) (575738/2008-1), National Institute for Amazonian Research (INPA), and US National Science Foundation (DEB 1257813). CPR, THSP, and DDWF received fellowships from CNPq and/or Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed, INPA’s ethics committee rules (Protocol Number 33/2012). Fish surveys were authorized by IBAMA through license #101932, and followed.

Supplementary material

10750_2018_3740_MOESM1_ESM.docx (436 kb)
Supplementary material 1 (DOCX 437 kb)
10750_2018_3740_MOESM2_ESM.txt (86 kb)
Supplementary material 2 (TXT 85 kb)


  1. Allen, R. M., Y. M. Buckley & D. J. Marshall, 2008. Offspring size plasticity in response to intraspecific competition: an adaptive maternal effect across life-history stages. The American Naturalist 171: 225–237.CrossRefGoogle Scholar
  2. Amundsen, P.-A., R. Knudsen & A. Klemetsen, 2007. Intraspecific competition and density dependence of food consumption and growth in arctic charr. Journal of Animal Ecology 76: 149–158.CrossRefGoogle Scholar
  3. Barthem, R. B. & N. N. Fabré, 2004. Biologia e diversidade dos recursos pesqueiros da Amazônia, p. 17–62. In: Ruffino, M.L. (coord.). A pesca e os recursos pesqueiros na Amazônia brasileira. Ibama/Provárzea, Manaus, Brasil, 268 pp.Google Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  5. Bittencourt, M. M. & S. A. Amadio, 2007. Proposta para identificação rápida dos períodos hidrológicos em áreas de várzea do rio Solimões-Amazonas nas proximidades de Manaus. Acta Amazonica 3: 303–308.CrossRefGoogle Scholar
  6. Boyd, I. L., 2000. State-dependent fertility in pinnipeds: contrasting capital and income breeders. Functional Ecology 14: 623–630.CrossRefGoogle Scholar
  7. Breheny, P. & W. Burchett, 2017. Visualizing Regression Models Using Visreg.
  8. Brito, J. G., L. F. Alves & H. M. V. Espirito Santo, 2014. Seasonal and spatial variations in limnological conditions of a floodplain lake (Lake Catalão) connected to both the Solimões and Negro rivers, Central Amazonia. Acta Amazonica 44: 121–134.CrossRefGoogle Scholar
  9. Brosset, P., J. Lloret, M. Muñoz, C. Fauvel, E. Van Beveren, V. Marques, J.-M. Fromentin, F. Ménard & C. Saraux, 2016. Body reserves mediate trade-offs between life-history traits: new insights from small pelagic fish reproduction. Royal Society Open Science 3: 160202.CrossRefGoogle Scholar
  10. Brown-Peterson, N. J., D. M. Wyanski, F. Saborido-Rey, B. J. Macewicz & S. K. Lowerre-Barbieri, 2011. A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 3: 52–70.CrossRefGoogle Scholar
  11. Byström, P. & E. García-Berthou, 1999. Density dependent growth and size specific competitive interactions in young fish. Oikos 86: 217–232.CrossRefGoogle Scholar
  12. Cam, E., W. A. Link, E. G. Cooch, J. Y. Monnat & E. Danchin, 2002. Individual covariation in life-history traits: seeing the trees despite the forest. The American Naturalist 159: 96–105.PubMedGoogle Scholar
  13. Claro-Junior, L., E. Ferreira, J. Zuanon & C. Araújo-Lima, 2004. O efeito da floresta alagada na alimentação de três espécies de peixes onívoros em lagos de várzea da Amazônia Central, Brasil. Acta Amazonica 34: 133–137.CrossRefGoogle Scholar
  14. Clutton-Brock, T. H., I. R. Stevenson, P. Marrow, A. D. Maccoll, A. I. Houston & J. M. McNamara, 1996. Population fluctuations, reproductive costs and life-history tactics in female soay sheep. Journal of Animal Ecology 65: 675–689.CrossRefGoogle Scholar
  15. Correa, S. B. & K. O. Winemiller, 2014. Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95: 10–224.CrossRefGoogle Scholar
  16. Correia, G. B., F. K. Siqueira-Souza & C. E. C. Freitas, 2014. Intra- and inter-annual changes in the condition factors of three Curimatidae detritivores from Amazonian floodplain lakes. Biota Neotropica 1: 7–15.Google Scholar
  17. Dantzer, B., A. E. Newman, R. Boonstra, R. Palme, S. Boutin, M. M. Humphries & A. G. McAdam, 2013. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340: 1215–2117.CrossRefGoogle Scholar
  18. Depczynski, M., C. J. Fulton, M. J. Marnane & D. R. Bellwood, 2007. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153: 111–120.CrossRefGoogle Scholar
  19. Descamps, S., J. M. Gaillard, S. Hamel & N. G. Yoccoz, 2016. When relative allocation depends on total resource acquisition: implication for the analysis of trade-offs. Jorunal of Evolutionary Biology 29: 1860–1866.CrossRefGoogle Scholar
  20. Dutil, J.-D., 1989. Energetic constraints and spawning interval in the anadromous arctic charr (Salvelinus alpinus). Copeia 1986: 945–955.CrossRefGoogle Scholar
  21. Ejsmond, M. J., Ø. Varpe, M. Czarnoleski & J. Kozłowski, 2015. Seasonality in offspring value and trade-offs with growth explain capital breeding. The American Naturalist 186: E111–E125.CrossRefGoogle Scholar
  22. Ferreira, E., J. Zuanon & G. M. Santos, 1998. Peixes Comerciais do Médio Amazonas Região de Santarém—PA. IBAMA, Brasília: 211 p.Google Scholar
  23. Festa-Bianchet, M., J. M. Gaillard & J. T. Jorgenson, 1998. Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. The American Naturalist 152: 367–379.PubMedGoogle Scholar
  24. França, G. F., H. J. Grier & I. Quagio-Grassiotto, 2010. A new vision of the origin and the oocyte development in the ostariophysi applied to Gymnotus sylvius (Teleostei, Gymnotiformes). Neotropical Ichthyology 8: 787–804.CrossRefGoogle Scholar
  25. Frappart, F., F. Papa, J. S. Silva, G. Ramillien, C. Prigent, F. Seyler & S. Calmant, 2012. Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environment Research Letters 7: 044010.CrossRefGoogle Scholar
  26. Garcia-Vasquez, A., G. Vargas, H. Sánchez, S. Tello & F. Duponchelle, 2015. Periodic life history strategy of Psectrogaster rutiloides, Kner 1858, in the Iquitos region, Peruvian Amazon. Journal of Applied Ichthyology 31: 31–39.CrossRefGoogle Scholar
  27. Garnier, A., J. M. Gaillard, D. Gauthier & A. Besnard, 2016. What shapes fitness costs of reproduction in long-lived iteroparous species? A case study on the Alpine ibex. Ecology 97: 205–214.CrossRefGoogle Scholar
  28. Hamel, S., S. D. Côté & M. Festa-Bianchet, 2010. Maternal characteristics and environment affect the costs of reproduction in female mountain goats. Ecology 91: 2034–2043.CrossRefGoogle Scholar
  29. Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.CrossRefGoogle Scholar
  30. Houston, A. I. & J. N. McNamara, 1992. Phenotypic plasticity as a state-dependent life-history decision. Evolutionary Ecology 6: 243–253.CrossRefGoogle Scholar
  31. Jakob, E. M., S. D. Marshall & G. W. Uetz, 1996. Estimating fitness: a comparison of body condition indices. Oikos 77: 61–67.CrossRefGoogle Scholar
  32. Johansson, F. & L. Rowe, 1999. Life history and behavioral responses to time constraints in a damselfly. Ecology 80: 1242–1252.CrossRefGoogle Scholar
  33. Johnson, R. B., 2009. Lipid deposition in oocytes of teleost fish during secondary oocyte growth. Reviews in Fisheries Science 17: 78–89.CrossRefGoogle Scholar
  34. Jönsson, K. I., 1997. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78: 57–66.CrossRefGoogle Scholar
  35. Junk, W. J., 1985. Temporary fat storage, an adaptation of some fish species to the river level fluctuations and related environmental changes of the Amazon River. Amazoniana 9: 315–351.Google Scholar
  36. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river—floodplain systems. Special Publication of the Canadian Journal of Fisheries and Aquatic Sciences 106: 10–127.Google Scholar
  37. Lescroël, A., K. M. Dugger, G. Ballard & D. G. Ainley, 2009. Effects of individual quality, reproductive success and environmental variability on survival of a long-lived seabird. Journal of Animal Ecology 78: 798–806.CrossRefGoogle Scholar
  38. Lourdais, O., X. Bonnet, R. Shine, D. DeNardo, G. Naulleau & M. Guillon, 2002. Capital-breeding and reproductive effort in a variable environment: a longitudinal study of a viviparous snake. Journal of Animal Ecology 71: 470–479.CrossRefGoogle Scholar
  39. Lowe-McConnell, R. H., 1987. Ecological Studies in Tropical Fish Communities. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  40. Lowerre-Barbieri, S. K., N. J. Brown-Peterson, H. Murua, J. Tomkiewicz, D. Wyanski & F. Saborido-Rey, 2011. Emerging issues and methodological advances in fisheries reproductive biology. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 3: 32–51.CrossRefGoogle Scholar
  41. McBride, R. S., S. Somarakis, G. R. Fitzhugh, A. Albert, N. A. Yaragina, M. J. Wuenschel, A. Alonso-Fernandez & G. Basilone, 2015. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries 16: 26–57.CrossRefGoogle Scholar
  42. Menezes, N. A. & A. E. A. D. M. Vazzoler, 1992. Reproductive characteristics of characiformes. In Hamlett, W. C. (ed.), Reproductive Biology of South American Vertebrates. Springer, Berlin: 60–70.CrossRefGoogle Scholar
  43. Murua, H. & F. Saborido-Rey, 2003. Female reproductive strategies of marine fish species of the north Atlantic. Journal of Northwest Atlantic Fisheries Science 33: 23–31.CrossRefGoogle Scholar
  44. Neves dos Santos, R., E. Ferreira & S. Amadio, 2008. Effect of seasonality and trophic group on energy acquisition in Amazonian fish. Ecology of Freshwater Fish 17: 340–348.CrossRefGoogle Scholar
  45. Neves dos Santos, R., E. Ferreira & S. Amadio, 2010. Patterns of energy allocation to reproduction in three Amazonian fish species. Neotropical Ichthyology 8: 155–161.CrossRefGoogle Scholar
  46. Pinot, A., B. Gauffre & V. Bretagnolle, 2014. The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore. BMC Ecology 14: 17.CrossRefGoogle Scholar
  47. Plaistow, S. J. & T. G. Benton, 2009. The influence of context-dependent maternal effects on population dynamics: an experimental test. Philosophical Transactions of the Royal Society B 364: 1049–1058.CrossRefGoogle Scholar
  48. Prestes, L., M. G. M. Soares, F. R. Silva & M. M. Bittencourt, 2010. Dynamic population from Triportheus albus, T. angulatus and T. auritus (Characiformes: Characidae) in Amazonian Central lakes. Biota Neotropical 10: 177–181.CrossRefGoogle Scholar
  49. R Development Core Team, 2016. R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-projectorg
  50. Reznick, D. N. & A. P. Yang, 1993. The influence of fluctuating resources on life history: patterns of allocation and plasticity in female guppies. Ecology 74: 2011–2019.CrossRefGoogle Scholar
  51. Rideout, R. M. & J. Tomkiewicz, 2011. Skipped spawning in fishes: more common than you might think. Marine and Coastal Fisheries 3: 176–189.CrossRefGoogle Scholar
  52. Robert, A., M. Bolton, F. Jiguet & J. Bried, 2015. The survival–reproduction association becomes stronger when conditions are good. Proceedings Royal Society B 282: 20151529.CrossRefGoogle Scholar
  53. Rodríguez, M. A. & W. M. Lewis Jr., 1994. Regulation and stability in fish assemblages of neotropical floodplain lakes. Oecologia 99: 166–180.CrossRefGoogle Scholar
  54. Rollinson, N. & J. A. Hutchings, 2013. Environmental quality predicts optimal egg size in the wild. The American Naturalist 182: 76–90.CrossRefGoogle Scholar
  55. Röpke, C. P., E. Ferreira & J. Zuanon, 2014. Seasonal changes in the use of feeding resources by fish in stands of aquatic macrophytes in an Amazonian floodplain Brazil. Environmental Biology of Fishes 97: 401–414.CrossRefGoogle Scholar
  56. Röpke, C. P., S. Amadio, K. O. Winemiller & J. Zuanon, 2016. Seasonal dynamics of the fish assemblage in a floodplain lake at the confluence of the Negro and Amazon Rivers. Journal of Fish Biology 89: 194–212.CrossRefGoogle Scholar
  57. Röpke, C. P., A. Amadio, J. Zuanon, E. Ferreira, C. P. Deus, T. H. S. Pires & K. O. Winemiller, 2017. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports 7: 40170.CrossRefGoogle Scholar
  58. Sánchez-Botero, J. I. & C. Araújo-Lima, 2001. As macrófitas como berçário para a ictiofauna da várzea do rio Amazonas. Acta Amazonica 31: 437–447.CrossRefGoogle Scholar
  59. Sibly, R. M. & P. Calow, 1989. A life-cycle theory of responses to stress. Biological Journal of the Linnean Society 37: 101–116.CrossRefGoogle Scholar
  60. Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.Google Scholar
  61. Stephens, P. A., I. L. Boyd, J. M. McNamara & A. I. Houston, 2009. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90: 2057–2067.CrossRefGoogle Scholar
  62. Stephens, P. A., A. I. Houston, K. C. Harding, I. L. Boyd & J. M. McNamara, 2014. Capital and income breeding: the role of food supply. Ecology 95: 882–896.CrossRefGoogle Scholar
  63. Varpe, Ø., 2017. Life history adaptations to seasonality. Integrative and Comparative Biology 57: 943–960.CrossRefGoogle Scholar
  64. Varpe, Ø., C. Jørgensen, G. A. Tarling & Ø. Fiksen, 2009. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos. Scholar
  65. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S-plus. Springer, New York.CrossRefGoogle Scholar
  66. Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.CrossRefGoogle Scholar
  67. Winemiller, K. O. & D. B. Jepsen, 1998. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53: 267–296.CrossRefGoogle Scholar
  68. Wright, P. J., J. E. Orpwood & B. E. Scott, 2017. Impact of rising temperature on reproductive investment in a capital breeder: the lesser sandeel. Journal of Experimental Marine Biology and Ecology 486: 52–58.CrossRefGoogle Scholar
  69. Yamamoto, K. C., M. G. M. Soares & C. E. C. Freitas, 2004. Alimentação de Triportheus angulatus (Spix & Agassiz, 1829) no lago Camaleão, Manaus, AM, Brasil. Acta Amazonica 34: 653–659.CrossRefGoogle Scholar
  70. Zurr, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed effects models and extensions in ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculdade de Ciências Agrárias e Instituto de Ciências BiológicasUniversidade Federal do Amazonas – UFAMManausBrazil
  2. 2.Coordenação de BiodiversidadeInstituto Nacional de Pesquisas da Amazônia – INPAManausBrazil
  3. 3.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations