Skip to main content

Advertisement

Log in

Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Streams of protected areas should be subjected to less environmental degradation than surrounding areas and consequently support greater aquatic biodiversity. To test this, 186 environmental and landscape variables were measured in 34 streams within the Caxiuanã National Forest (CNF) and its surrounding zone in the eastern Amazon. We expected that streams inside the CNF protected area would have more riparian forest cover and large woody debris (LWD) that increase instream habitat complexity and aquatic biodiversity. Several environmental variables differed between streams in the CNF and surrounding zone; however, the major difference was greater LWD, leaf litter, and channel depth in CNF streams. Richness of fish, Chironomidae, EPT (Ephemeroptera + Plecoptera + Trichoptera), and all-groups combined were positively associated with LWD. Assemblage taxonomic composition was correlated with several variables, but most groups revealed no clear differentiation between the two areas. This lack of differentiation may be explained by relatively minor environmental impacts in areas surrounding the CNF given the region’s small human population. The most notable impact to streams outside of the CNF was removal of LWD to facilitate boat passage. To conserve aquatic biodiversity, we recommend expansion of protected areas and adoption of policies governing land use in surrounding zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19: 646–652.

    Google Scholar 

  • Albert, J. S., 2001. Species diversity and phylogenetic systematics of American knifefishes (Gymnotiformes, Teleostei). Miscellaneous Publications of the Museum of Zoology of the University of Michigan 190: 1–127.

    Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J., 2005. PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA Design) using permutation tests. Department of Statistics, University of Auckland, New Zealand.

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, DC.

  • Barreto, C. C., 1999. Heterogeneidade espacial do habitat e diversidade específica: implicações ecológicas e métodos de mensuração. Oecologia Brasiliensis 7: 121–153.

    Google Scholar 

  • Behling, H. & M. L. da Costa, 2000. Holocene environmental changes from the Rio Curuá record in the Caxiuanã region, eastern Amazon Basin. Quaternary Research 53: 369–377.

    Google Scholar 

  • Benone, N. L., M. C. Esposito, L. Juen, P. S. Pompeu & L. F. A. Montag, 2017. Regional controls on physical habitat structure of amazon streams. River Research and Applications 33(5): 766–776.

    Google Scholar 

  • Benone, N. L., R. Ligeiro, L. Juen & L. F. A. Montag, 2018. Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Marine and Freshwater Research 69: 243–252.

    Google Scholar 

  • Berkman, H. E. & C. F. Rabeni, 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18: 285–294.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    PubMed  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Google Scholar 

  • Braccia, A. & D. P. Batzer, 2001. Invertebrates associated with woody debris in a south eastern U.S. forested floodplain wetland. Wetlands 21: 18–31.

    Google Scholar 

  • Brasil, 2007. Plano de Desenvolvimento Territorial Sustentável para o Arquipélago do Marajó: resumo executivo da versão preliminar para discussão nas consultas públicas. Governo Federal, Grupo Executivo Interministerial, Brasília: Editora do Ministério da Saúde.

  • Casatti, L., F. Langeani & C. P. Ferreira, 2006. Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environmental Management 38: 974–982.

    PubMed  Google Scholar 

  • Castello, L., D. G. McGrath, L. L. Hess, M. T. Coe, P. A. Lefebvre, P. Petry, M. N. Macedo, V. F. Renó & C. C. Arantes, 2013. The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6: 217–229.

    Google Scholar 

  • Chapman, J. M., C. L. Proulx, M. A. N. Veilleux, C. Levert, S. Bliss, N. W. R. Lapointe & S. J. Cooke, 2014. Clear as mud: a meta-analysis on the effects of sedimentation on freshwater fish and the effectiveness of sediment-control measures. Water Research 56: 190–202.

    CAS  PubMed  Google Scholar 

  • Correia, R. A., A. C. M. Malhado, L. Lins, N. C. Gamarra, W. A. G. Bonfim, A. Valencia-Aguilar, C. Bragagnolo, P. Jepson & R. J. Ladle, 2016. The scientific value of Amazonian protected areas. Biodiversity and Conservation 25: 1503–1513.

    Google Scholar 

  • Daniels, M. D. & B. L. Rhoads, 2003. Influence of a large woody debris obstruction on three-dimensional flow structure in a meander bend. Geomorphology 51: 159–173.

    Google Scholar 

  • de Faria, A. P. J., R. Ligeiro, M. Callisto & L. Juen, 2017. Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia 802: 39–51.

    Google Scholar 

  • Díez, J. R., S. Larrañaga, A. Elosegi & J. Pozo, 2000. Effect of removal of wood on streambed stability and retention of organic matter. Journal of the North American Benthological Society 19: 621–632.

    Google Scholar 

  • Domínguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. In Adis, J. R., G. Rueda-Delgado & K. M. Wantzen (eds), Aquatic Biodiversity in Latin American (ABLA). Pensoft, Sofia-Moscow.

    Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling 196: 483–493.

    Google Scholar 

  • Dray, S., P. Legendre & G. Blanchet. 2011. packfor: forward selection with permutation (Canoco p.46). R package version 0.0-8/r100.

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    PubMed  Google Scholar 

  • Eggert, S. L., J. B. Wallace, J. L. Meyer & J. R. Webster, 2012. Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations. Ecosphere 3: 1–25.

    Google Scholar 

  • Entrekin, S. A., J. B. Wallace & S. L. Eggert, 2007. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 575: 401–413.

    Google Scholar 

  • Fahrig, L., J. Baudry, L. Brotons, F. G. Burel, T. O. Crist, R. J. Fuller, C. Sirami, G. M. Siriwandena & J. Martin, 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters 14: 101–112.

    PubMed  Google Scholar 

  • Ferreira, J., L. E. O. C. Aragão, J. Barlow, P. Barreto, E. Berenguer, M. Bustamante, T. A. Gardner, A. C. Lees, A. Lima, J. Louzada, R. Pardini, L. Parry, C. A. Peres, P. S. Pompeu, M. Tabarelli & J. Zuanon, 2014. Brazil’s environmental leadership at risk. Science 346: 706–707.

    CAS  PubMed  Google Scholar 

  • Ferreira, M. C., T. O. Begot, B. S. Prudente, L. Juen & L. F. A. Montag, 2018. Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Environmental Biology of Fishes 101: 547–562.

    Google Scholar 

  • Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.

    Google Scholar 

  • Figueiredo, R. O., D. Markewitz, E. A. Davidoson, A. E. Schuler, O. S. Watrin & P. S. Silva, 2010. Land-use effects on the chemical attributes of low-order streams in the eastern Amazon. Journal of Geophysical Research 115: G04004.

    Google Scholar 

  • Franquet, E., 1999. Chironomid assemblage of a Lower-Rhone dike field: relationships between substratum and biodiversity. Hydrobiologia 397: 121–131.

    Google Scholar 

  • Garrison, R. W., N. V. Ellenrieder & J. A. Louton, 2006. Dragonfly Genera of the New World: An Illustrated and Annotated Key to the Anisoptera. The Johns Hopkins University Press Maryland, Baltimore.

    Google Scholar 

  • Garrison, R. W., N. V. Ellenrieder & J. A. Louton, 2010. Dragonfly Genera of the New World: An Illustrated and Annotated Key to the Zygoptera. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Glaz, P. N., C. Nozais & D. Arseneault, 2009. Macroinvertebrates on coarse woody debris in the littoral zone of a boreal lake. Marine and Freshwater Research 60: 960–970.

    Google Scholar 

  • Gurnell, A. M., H. Piegay, F. J. Swanson & S. V. Gregory, 2002. Large wood and fluvial processes. Freshwater Biology 47: 601–619.

    Google Scholar 

  • Hamada, N. & S. R. M. Couceiro, 2003. An illustrated key to nymphs of Perlidae (Insecta, Plecoptera) genera in Central Amazonia, Brazil. Revista Brasileira de Entomologia 47: 477–480.

    Google Scholar 

  • Hartwig, M., M. Schäffer, P. Theuring, S. Avlyush, M. Rode & D. Borchardt, 2016. Cause–effect–response chains linking source identification of eroded sediments, loss of aquatic ecosystem integrity and management options in a steppe river catchment (Kharaa, Mongolia). Environmental Earth Sciences 75: 855.

    Google Scholar 

  • Heino, J., 2005. Metacommunity patterns of highly diverse stream midges: gradients, chequerboards, and nestedness, or is there only randomness? Ecological Entomology 30: 590–599.

    Google Scholar 

  • Homma, A. K. O., 2012. Extrativismo vegetal ou plantio: qual a opção para a Amazônia? Estudos Avançados 26: 167–186.

    Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Google Scholar 

  • Hoover, T. M., J. S. Richardson & N. Yonemitsu, 2006. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshwater Biology 51: 435–447.

    Google Scholar 

  • Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-Lorenzen, B. Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B. J. Wilsey, E. S. Zavale & M. Loreau, 2011. High plant diversity is needed to maintain ecosystem services. Nature 477: 199–202.

    CAS  PubMed  Google Scholar 

  • Juen, L., E. J. Cunha, F. G. Carvalho, M. C. Ferreira, T. O. Begot, A. L. Andrade, Y. Shimano, H. Leão, P. S. Pompeu & L. F. A. Montag, 2016. Effects of oil palm plantations on the habitat structure and biota of streams in Eastern Amazon. River Research and Applications 32: 2081–2094.

    Google Scholar 

  • Kaufmann, P. R. & J. M. Faustini, 2012. Simple measures of channel habitat complexity predict transient hydraulic storage in stream. Hydrobiologia 685: 69–95.

    Google Scholar 

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. Washington, U.S. Environmental Protection.

    Google Scholar 

  • Krause, S., M. J. Klaar, D. M. Hannah, J. Mant, J. Bridgeman, M. Trimmer & S. Manning-Jones, 2014. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. Wiley Interdisciplinary Reviews: Water 1: 263–275.

    CAS  Google Scholar 

  • Leal, C. G., P. S. Pompeu, T. A. Gardner, R. Leitão, R. M. Hughes, P. R. Kaufmann, J. Zuanon, F. R. Paula, S. F. B. Ferraz, J. R. Thomson, R. M. Nally, J. Ferreira & J. Barlow, 2016. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 31: 1725–1745.

    Google Scholar 

  • Legendre P., D. Borcard, G. F. Blanchet & S. Dray, 2012. MEM spatial eigenfunction and principal coordinate analyses. R package PCNM, version 2.1-2.

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. De Paula & S. F. B. Ferraz, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    PubMed  PubMed Central  Google Scholar 

  • Lencioni, F. A. A., 2005. Damselflies of Brazil: An Illustrated Identification Guide – 1 – Non-Coenagrionidae Families, 1st ed. All Print Editora, São Paulo.

    Google Scholar 

  • Li, A. O. Y. & D. Dudgeon, 2011. Leaf litter retention in tropical stream in Hong Kong. Fundamental and Applied Limnology 178: 159–170.

    Google Scholar 

  • Malacarne, T. J., M. T. Baumgartner, Y. Moretto & É. A. Gubiani, 2016. Effects of land use on the composition and structure of aquatic invertebrate community and leaf breakdown process in Neotropical streams. River Research and Applications 32: 1958–1967.

    Google Scholar 

  • Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.

    Google Scholar 

  • Martins, I., R. Ligeiro, R. M. Hughes, D. R. Macedo & M. Callisto, 2018. Regionalisation is key to establishing reference conditions for neotropical savanna streams. Marine and Freshwater Research 69: 82–94.

    Google Scholar 

  • MEA-Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC.

    Google Scholar 

  • Mensing, D. M., S. M. Galatowitsch & J. R. Tester, 1998. Anthropogenic effects on the biodiversity of riparian wetlands of a northern temperate landscape. Journal of Environmental Management 53: 349–377.

    Google Scholar 

  • Miguel, T. B., J. M. B. Oliveira-Junior, R. Ligeiro & L. Juen, 2017. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators 81: 555–566.

    CAS  Google Scholar 

  • Montag, L. F. A. & R. B. Barthem, 2006. Estratégias de conservação em comunidades de peixes da Bacia de Caxiuanã (Melgaço/PA): um lago antigo a ser comparado com represas novas. Boletim da Sociedade Brasileira de Ictiologia 82: 4–5.

    Google Scholar 

  • Monteiro-Júnior, C. S., L. Juen & N. Hamada, 2015. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecological Indicators 48: 303–311.

    Google Scholar 

  • Monteiro-Júnior, C. S., M. C. Esposito & L. Juen, 2016. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. Journal of Insect Conservation 20: 643–652.

    Google Scholar 

  • Moran, E. F., 2010. Environmental Social Science: Human–Environment Interactions and Sustainability. Wiley-Blackwell, Sussex.

    Google Scholar 

  • Naughton-Treves, L., M. B. Holland & K. Brandon, 2005. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annual Review of Environment and Resources 30: 219–252.

    Google Scholar 

  • Nessimian, J. L., E. M. Venticinque, J. Zuanon, P. De Marco Jr., M. Gordo, L. Fidelis, J. D. Batista & L. Juen, 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614: 117–131.

    Google Scholar 

  • Nicacio, G. & L. Juen, 2018. Relative roles of environmental and spatial constraints in assemblages of Chironomidae (Diptera) in Amazonian floodplain streams. Hydrobiologia 820: 201–213.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymons, M. H. H. Stevens, E. Szoecs & H. Wagener, 2018. Vegan: Community Ecology Package. R package version 2.5-1.

  • Oliveira, L. L., C. R. Ferreira, F. A. S. Sousa, A. C. L. Costa & A. P. Braga, 2008. Precipitação efetiva e interceptação em Caxiuanã, na Amazônia Oriental. Acta Amazonica 38: 723–732.

    Google Scholar 

  • Oliveira-Junior, J. M. B., P. De Marco Jr., K. Dias-Silva, R. P. Leitão, C. G. Leal, P. S. Pompeu, T. A. Gardner, R. M. Hughes & L. Juen, 2017. Effects of human disturbance and riparian conditions on Odonata (Insecta) assemblages in eastern Amazon basin streams. Limnologica-Ecology and Management of Inland Waters 66: 31–39.

    Google Scholar 

  • Owens, P. N., R. J. Batalla, A. J. Collins, B. Gomez, D. M. Hicks, A. J. Horowitz, G. M. Kondolf, M. Marden, M. J. Page, D. H. Peacock, E. L. Petticrew, W. Salomons & N. A. Trustrum, 2005. Fine-grained sediment in river systems: environmental significance and management issues. River Research and Applications 21: 693–717.

    Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P.R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M.R. Cappaert, 2006. Environmental monitoring and assessment program – surface waters western pilot study: field operations manual for wadeable streams. Environmental Protection Agency, EPA 600/R-06/003. U.S., Office of Research and Development, Washington, DC.

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Google Scholar 

  • Peres-Neto, P. R., D. A. Jackson & K. M. Somers, 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84: 2347–2363.

    Google Scholar 

  • Pes, A. M. O., N. Hamada & J. L. Nessimian, 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Revista Brasileira de Entomologia 49: 181–2014.

    Google Scholar 

  • Pilotto, F., G. L. Harvey, G. Wharton & M. T. Pusch, 2016. Simple large wood structures promote hydromorphological heterogeneity and benthic macroinvertebrate diversity in low-gradient rivers. Aquatic Sciences 78: 755–766.

    CAS  Google Scholar 

  • Poff, N. L. & J. V. Ward, 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629–645.

    Google Scholar 

  • Prudente, B. S., P. S. Pompeu, L. Juen & L. F. A. Montag, 2017. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology 62: 303–316.

    Google Scholar 

  • QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation. Available in: http://qgis.org/pt_BR/site/.

  • R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Reis, R. E., S. O. Kullander & C. J. Ferrari Jr., 2003. Check List of the Freshwater Fishes of South and Central America. EDPUCRS, Porto Alegre.

    Google Scholar 

  • Resende, D. C. & P. De Marco, 2010. First description of reproductive behavior of the Amazonian damselfly Chalcopteryx rutilans (Rambur) (Odonata, Polythoridae). Revista Brasileira de Entomologia 54: 436–440.

    Google Scholar 

  • Rinella, D. J. & J. W. Feminella, 2005. Comparison of benthic macroinvertebrates colonising sand, wood, and artificial substrates in a low-gradient stream. Journal of Freshwater Ecology 20: 209–220.

    Google Scholar 

  • Salles, F. F. & M. M. Lima, 2014. Chave interativa para identificação dos gêneros de Leptophlebiidae (Ephemeroptera) registrados para o Brasil. http://www.ephemeroptera.com.br (Accessed September 2014).

  • Schneider, K. N. & K. O. Winemiller, 2008. Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610: 235–244.

    Google Scholar 

  • SFB & IMAZON, 2010. A atividade madeireira na Amazônia brasileira: produção, receita e mercados. Serviço Florestal Brasileiro & Instituto do Homem e Meio Ambiente da Amazônia, Belém.

  • Silveira, I. M. & H. D. A. Quaresma, 2013. Etnografia da ocupação de uma pequena ‘‘ilha de terra’’. In Lisboa, P. L. B. (org), Caxiuanã: paraíso ainda preservado. Museu Paraense Emílio Goeldi, Belém: 187–203.

  • Smith, R. D., R. C. Sidle, P. E. Porter & J. R. Noel, 1993. Effects of experimental removal of wood on the channel morphology of a forest, gravel-bed stream. Journal of Hydrology 152: 153–178.

    Google Scholar 

  • Soares-Filho, B., P. Moutinho, D. Nepstad, A. Anderson, H. Rodrigues, R. Garcia, L. Dietzschi, F. Merry, M. Bowman, L. Hissa, R. Silvestrini & C. Maretti, 2010. Role of Brazilian Amazon protected areas in climate change mitigation. Proceedings of the National Academy of Sciences 107: 10821–10826.

    CAS  Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913–920.

    Google Scholar 

  • Sueiro, M. C., A. Bortolus & E. Schwindt, 2011. Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgoland Marine Research 65: 467–477.

    Google Scholar 

  • Sutherland, A. B., J. M. Culp & G. A. Benoy, 2012. Evaluation of deposited sediment and macroinvertebrate metrics used to quantify biological response to excessive sedimentation in agricultural streams. Environmental Management 50: 50–63.

    PubMed  Google Scholar 

  • Sweeney, B. W. & J. D. Newbold, 2014. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association 50: 560–584.

    Google Scholar 

  • Trivinho-Strixino S., 2014. Ordem Diptera. Família Chironomidae. Guia de identificação de larvas. In Hamada N., J. L. Nessimian & R. B. Querino (eds), Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Editora do INPA, Manaus.

  • Valente-Neto, F., R. Koroiva, A. A. Fonseca-Gessner & F. De Oliveira Roque, 2015. The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquatic Ecology 49: 115–125.

    CAS  Google Scholar 

  • Van der Sleen, P. & J. S. Albert, 2018. Field Guide to the Fishes of the Amazon, Orinoco & Guianas. Princeton University Press, New Jersey.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Google Scholar 

  • Veríssimo, A., D. Celentano, C. Souza-Jr & R. Salomão, 2006. Zoneamento de áreas para manejo florestal no Pará. Instituto do Homem e Meio Ambiente da Amazônia, 8.

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. Reidy Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    PubMed  Google Scholar 

  • Wallace, J. B., J. R. Webster, S. L. Eggert, J. L. Meyer & E. R. Siler, 2001. Large woody debris in a headwater stream: long-term legacies of forest disturbance. International Review of Hydrobiology 86: 501–513.

    Google Scholar 

  • Wallerstein, N. P. & C. R. Thorne, 2004. Influence of large woody debris on morphological evolution of incised, sand-bed channels. Geomorphology 57: 53–73.

    Google Scholar 

  • Watson, G. & T. W. Hillman, 1997. Factors affecting the distribution and abundance of bull trout: an investigation at hierarchical scales. North American Journal of Fisheries Management 17: 237–252.

    Google Scholar 

  • Willis, S. C., K. O. Winemiller & H. López-Fernández, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    CAS  PubMed  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1999. Sediment deposition in a small lowland stream – management implications. Regulated Rivers Research & Management 15: 199–210.

    Google Scholar 

  • Wright, J. P. & A. S. Flecker, 2004. Deforesting the riverscape: the effects of wood on fish diversity in a Venezuelan piedmont stream. Biological Conservation 120: 443–451.

    Google Scholar 

Download references

Acknowledgements

We are especially grateful to the employees of the Ferreira Penna Research Station for their assistance with fieldwork. This study was supported by grants from the Programa de Pesquisa em Biodiversidade, Fundação Amazônia de Amparo a Estudos e Pesquisa do Pará and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through CNPq/Universal (process: 475611/2012-8). LJ (process: 307597/2016-4), LFAM (process: 305017/201600) and PSP (process: 303548/2017-7). The first author was funded by Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) (LFAM—process 88881.119097/2016-01). KOW received support from US National Science Foundation grant DEB 1257813. HL, NLB, CSMJ, APJF, GN, and DHAG received stipends from the CAPES, CNPq, and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (PPM-00608/15) research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. A. Montag.

Additional information

Handling editor: André Padial

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montag, L.F.A., Leão, H., Benone, N.L. et al. Contrasting associations between habitat conditions and stream aquatic biodiversity in a forest reserve and its surrounding area in the Eastern Amazon. Hydrobiologia 826, 263–277 (2019). https://doi.org/10.1007/s10750-018-3738-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3738-1

Keywords

Navigation