Advertisement

Size-effect, asymmetry, and small-scale spatial variation in otolith shape of juvenile sole in the Southern North Sea

  • Sophie Delerue-RicardEmail author
  • Hanna Stynen
  • Léo Barbut
  • Fabien Morat
  • Kelig Mahé
  • Pascal I. Hablützel
  • Kris Hostens
  • Filip A. M. Volckaert
NORTH SEA OPEN SCIENCE CONFERENCE

Abstract

While otolith shape analysis can provide a valuable tool for discriminating between fish populations, factors which may influence otolith shape, such as the effect of size, directional asymmetry in growth, and local environmental conditions, are often unknown. Here, we analyzed differences in otolith shape across three size classes of age-0 common sole Solea solea L. from nursery grounds off the Belgian coast and in the Wadden Sea. Across size classes, form-factor decreased and roundness remained consistently high in both nursery grounds, while ellipticity increased in the Belgian nursery. Directional asymmetry between left and right otoliths measured by Fourier coefficients accounted for 0.96 and 7.2% of the variance when comparing otoliths overall, and for each size class, respectively. Within the Belgian nursery, results were consistent across sampling years and locations. In addition, otolith shape was marginally different between nursery grounds, but highly variable within nursery grounds. A small divergent group, which seems partly related to fish size, was noted at both spatial and temporal scales. Based on these results and before embarking on a study of population structure using otolith shape in age-0 common sole, we recommend testing for directional asymmetry and fish size effects across the entire region of interest.

Keywords

Early-life stages Fourier coefficients Nursery ground Otolith shape Small-scale spatial structure 

Notes

Acknowledgements

Special thanks to K. Vanhalst (Institute for Agricultural and Fisheries Research, ILVO), the crew of RV Simon Stevin and RV Belgica, L. Bolle (Wageningen Marine Research), the crew of RV Stern, and the B-FishConnect Team for sampling. We are grateful to E. De Keyser, H. Christiansen, F. M. Heindler, F. Calboli (KU Leuven), B. Ernande (Ifremer), G. Lacroix (Royal Belgian Institute of Natural Sciences, RBINS), A. Vanden Bavière, J. Robbens (ILVO), and M. R. Siskey (Stony Brook University) for constructive comments. The B-FishConnect Project was funded by the Research Foundation: Flanders (Project Number G.0702.13N). Thanks also to three anonymous reviewers, who provided many helpful comments.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary material

10750_2018_3736_MOESM1_ESM.eps (563 kb)
Supplementary material 1 Fig. S1 Cluster dendrogram of the similarity distances of the Fourier coefficients of ten randomly chosen otoliths of juvenile sole, based on Ward’s distance. Picture numbers range from 1 to 40, with four consecutive pictures (e.g., 1–4, 5–8, etc.) being from the same otolith (EPS 562 kb)
10750_2018_3736_MOESM2_ESM.eps (89 kb)
Supplementary material 2 Fig. S2 Boxplot of roundness for 314 age-0 sole juveniles of sole at three size classes for each dataset (BE2013, BE2014 and NL2014) (EPS 89 kb)
10750_2018_3736_MOESM3_ESM.eps (309 kb)
Supplementary material 3 Fig. S3 Cluster dendrogram of the similarity distances of the Fourier coefficients of the juvenile sole sampled at the Belgian and Wadden Sea nursery grounds in 2014 (a) and at the Belgian nursery in 2013 and 2014 (b) using a complete hierarchical clustering method, based on Ward’s distance (EPS 309 kb)

References

  1. Amara, R., F. Lagardère & Y. Desaunay, 1993. Seasonal distribution and duration of the planktonic stage of Dover sole, Solea solea, larvae in the Bay of Biscay: an hypothesis. Journal of Fish Biology 43: 17–30.CrossRefGoogle Scholar
  2. Anken, R. H., M. Beier & H. Rahmann, 2002. Influence of hypergravity on fish inner ear otoliths: I. Developmental growth profile. Advances in Space Research 30: 721–725.CrossRefPubMedGoogle Scholar
  3. Burt, G. J. & R. S. Millner, 2008. Movements of sole in the Southern North Sea and Eastern English Channel from tagging studies (1955–2004). Science Series Technical Report, Vol. 143. Cefas, Lowestoft: 1–44.Google Scholar
  4. Cadrin, S. X., A. L. Kerr & S. Mariani (eds), 2014. Stock Identification Methods: Applications in Fishery Science. Academic, Amsterdam.Google Scholar
  5. Campana, S. E., 2005. Otolith elemental composition as a natural marker of fish stocks. In Stock Identification Methods. Academic, Burlington: 227–245.Google Scholar
  6. Campana, S. E. & J. M. Casselman, 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 50: 1062–1083.CrossRefGoogle Scholar
  7. Capoccioni, F., C. Costa, J. Aguzzi, P. Menesatti, A. Lombarte & E. Ciccotti, 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. Journal of Experimental Marine Biology and Ecology 397: 1–7.CrossRefGoogle Scholar
  8. Cardinale, M., P. Doering-Arjes, M. Kastowsky & H. Mosegaard, 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 61: 158–167.CrossRefGoogle Scholar
  9. Costanza, R., R. d’Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. J. Raskin, P. Sutton & M. van den Belt, 1998. The value of ecosystem services: putting the issues in perspective. Ecological Economics 25: 67–72.CrossRefGoogle Scholar
  10. Crampton, J. S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28: 179–186.CrossRefGoogle Scholar
  11. Cuveliers, E., A. Geffen, J. Guelinckx, J. Raeymaekers, J. Skadal, F. Volckaert & G. Maes, 2010. Microchemical variation in juvenile Solea solea otoliths as a powerful tool for studying connectivity in the North Sea. Marine Ecology Progress Series 401: 211–220.CrossRefGoogle Scholar
  12. Cuveliers, E. L., M. H. D. Larmuseau, B. Hellemans, S. L. N. A. Verherstraeten, F. A. M. Volckaert & G. E. Maes, 2012. Multi-marker estimate of genetic connectivity of sole (Solea solea) in the North-East Atlantic Ocean. Marine Biology 159: 1239–1253.CrossRefGoogle Scholar
  13. Degraer, S., E. Verfaillie, W. Willems, E. Adriaens, M. Vincx & V. Van Lancker, 2008. Habitat suitability modelling as a mapping tool for macrobenthic communities: an example from the Belgian part of the North Sea. Continental Shelf Research 28: 369–379.CrossRefGoogle Scholar
  14. Diopere, E., A. Cariani, S. Vandamme, J. Van Houdt, F. Tinti, F. A. M. Volckaert, FISHPOPTRACE Consortium & G. E. Maes, 2018. Seascape genetics of a flatfish reveals local selection under high levels of gene flow. ICES Journal of Marine Science 75: 675–689.CrossRefGoogle Scholar
  15. Gagliano, M. & M. I. McCormick, 2004. Feeding history influences otolith shape in tropical fish. Marine Ecology Progress Series 278: 291–296.CrossRefGoogle Scholar
  16. Gonzalez-Salas, C. & P. Lenfant, 2007. Interannual variability and intraannual stability of the otolith shape in European anchovy Engraulis encrasicolus (L.) in the Bay of Biscay. Journal of Fish Biology 70: 35–49.CrossRefGoogle Scholar
  17. Hüssy, K., 2008. Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. Journal of Experimental Marine Biology and Ecology 364: 35–41.CrossRefGoogle Scholar
  18. Jung, A., R. Dekker, M. Germain, C. Philippart, J. Witte & H. van der Veer, 2017. Long-term shifts in intertidal predator and prey communities in the Wadden Sea and consequences for food requirements and supply. Marine Ecology Progress Series 579: 37–53.CrossRefGoogle Scholar
  19. Kaplan, D. M., M. Cuif, C. Fauvelot, L. Vigliola, T. Nguyen-Huu, J. Tiavouane & C. Lett, 2017. Uncertainty in empirical estimates of marine larval connectivity. ICES Journal of Marine Science 74: 1723–1734.CrossRefGoogle Scholar
  20. Kotoulas, G., F. Bonhomme & P. Borsa, 1995. Genetic structure of the common sole Solea vulgaris at different geographic scales. Marine Biology 122: 361–375.CrossRefGoogle Scholar
  21. Kuhl, F. P. & C. R. Giardina, 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258.CrossRefGoogle Scholar
  22. Lacroix, G., G. E. Maes, L. J. Bolle & F. A. M. Volckaert, 2013. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea solea L.). Journal of Sea Research 84: 13–25.CrossRefGoogle Scholar
  23. Lagardère, F. & H. Troadec, 1997. Age estimation in common sole Solea solea larvae: validation of daily increments and evaluation of a pattern recognition technique. Marine Ecology Progress Series 155: 223–237.CrossRefGoogle Scholar
  24. Le Pape, O. & N. Cognez, 2016. The range of juvenile movements of estuarine and coastal nursery dependent flatfishes: estimation from a meta-analytical approach. Journal of Sea Research 107: 43–55.CrossRefGoogle Scholar
  25. Le Pape, O., F. Chauvet, S. Mahévas, P. Lazure, D. Guérault & Y. Désaunay, 2003. Quantitative description of habitat suitability for the juvenile common sole (Solea solea, L.) in the Bay of Biscay (France) and the contribution of different habitats to the adult population. Journal of Sea Research 50: 139–149.CrossRefGoogle Scholar
  26. Legendre, P. & L. Legendre (eds), 2012. Numerical Ecology, Vol. 24. Elsevier, Amsterdam: 1006 pp.Google Scholar
  27. Lombarte, A., G. J. Torres & B. Morales-Nin, 2003. Specific Merluccius otolith growth patterns related to phylogenetics and environmental factors. Journal of the Marine Biological Association of the UK 83: 277–281.CrossRefGoogle Scholar
  28. Lychakov, D. V. & Y. T. Rebane, 2005. Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hearing Research 201: 55–69.CrossRefPubMedGoogle Scholar
  29. Mahé, K., C. Oudard, T. Mille, J. Keating, P. Gonçalves, L. W. Clausen, G. Petursdottir, H. Rasmussen, E. Meland, E. Mullins, J. K. Pinnegar, Å. Hoines & V. M. Trenkel, 2016. Identifying blue whiting (Micromesistius poutassou) stock structure in the Northeast Atlantic by otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 73: 1363–1371.CrossRefGoogle Scholar
  30. Mapp, J., E. Hunter, J. Van Der Kooij, S. Songer & M. Fisher, 2017. Otolith shape and size: the importance of age when determining indices for fish-stock separation. Fisheries Research 190: 43–52.CrossRefGoogle Scholar
  31. Mérigot, B., Y. Letourneur & R. Lecomte-Finiger, 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology 151: 997–1008.CrossRefGoogle Scholar
  32. Mille, T., K. Mahé, M. C. Villanueva, H. De Pontual & B. Ernande, 2015. Sagittal otolith morphogenesis asymmetry in marine fishes. Journal of Fish Biology 87: 646–663.CrossRefPubMedGoogle Scholar
  33. Morat, F., 2011. Influence des apports rhodaniens sur les traits d’histoire de vie de la sole commune (Solea solea) : apports de l’étude minéralogique et chimique des otolithes. Thèse de doctorat, spécialité Océanographie, Université Aix Marseille II, Marseille: 308 pp.Google Scholar
  34. Morat, F., Y. Letourneur, J. Dierking, C. Pécheyran, G. Bareille, D. Blamart & M. Harmelin-Vivien, 2014. The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints. PLoS ONE 9(1): e86585.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morat, F., P. Gibert, N. Reynaud, B. Testi, P. Favriou, V. Raymond, G. Carrel & A. Maire, 2017. Spatial distribution, total length frequencies and otolith morphometry as tools to analyse the effects of a flash flood on populations of roach (Rutilus rutilus). Ecology of Freshwater Fish 27: 421–432.CrossRefGoogle Scholar
  36. Neves, V., D. Silva, F. Martinho, C. Antunes, S. Ramos & V. Freitas, 2018. Assessing the effects of internal and external acoustic tagging methods on European flounder Platichthys flesus. Fisheries Research 206: 202–208.CrossRefGoogle Scholar
  37. OSPAR Commission (ed.), 2000. Region 2: Greater North Sea. OSPAR Commission, London.Google Scholar
  38. Pawson, M. G. & S. Jennings, 1996. A critique of methods for stock identification in marine capture fisheries. Fisheries Research 25: 203–217.CrossRefGoogle Scholar
  39. Philippe, K., L. Christophe, C. Gwenaelle, H. Xavier, G. Alain, V. Sandrine, Martin Canterbury Christ Church University, W. Mike & C. Andre, 2006. Spatial patterns and GIS habitat modelling of Solea solea, Pleuronectes flesus and Limanda limanda fish larvae in the Eastern English Channel during the spring. Scientia Marina 11: 147–157.Google Scholar
  40. Pinsky, M. L., P. Saenz-Agudelo, O. C. Salles, G. R. Almany, M. Bode, M. L. Berumen, S. Andréfouët, S. R. Thorrold, G. P. Jones & S. Planes, 2017. Marine dispersal scales are congruent over evolutionary and ecological time. Current Biology 27: 149–154.CrossRefPubMedGoogle Scholar
  41. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  42. Rabaut, M., M. Audfroid Calderón, L. Van de Moortel, J. van Dalfsen, M. Vincx, S. Degraer & N. Desroy, 2013. The role of structuring benthos for juvenile flatfish. Journal of Sea Research 84: 70–76.CrossRefGoogle Scholar
  43. Rohlf, F. J. & J. W. Archie, 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Biology 33: 302–317.Google Scholar
  44. Russell, F. S. (ed.), 1976. The eggs and planktonic stages of British marine fishes. Academic, London: 524 pp.Google Scholar
  45. Thorrold, S. R., C. Latkoczy, P. K. Swart & C. M. Jones, 2001. Natal homing in a marine fish metapopulation. Science (New York, NY) 291: 297–299.CrossRefGoogle Scholar
  46. Tuset, V. M., I. J. Lozano, J. A. González, J. F. Pertusa & M. M. García-Díaz, 2003. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology 19: 88–93.CrossRefGoogle Scholar
  47. Van der Land, M. A., 1991. Distribution of flatfish eggs in the 1989 egg surveys in the southeastern North Sea, and mortality of plaice and sole eggs. Netherlands Journal of Sea Research 27: 277–286.CrossRefGoogle Scholar
  48. Van der Veer, H., J. Koot, G. Aarts, R. Dekker, W. Diderich, V. Freitas & J. Witte, 2011. Long-term trends in juvenile flatfish indicate a dramatic reduction in nursery function of the Balgzand intertidal, Dutch Wadden Sea. Marine Ecology Progress Series 434: 143–154.CrossRefGoogle Scholar
  49. Van Hoey, G., S. Degraer & M. Vincx, 2004. Macrobenthic community structure of soft-bottom sediments at the Belgian Continental Shelf. Estuarine, Coastal and Shelf Science 59: 599–613.CrossRefGoogle Scholar
  50. Vieira, A. R., A. Neves, V. Sequeira, R. B. Paiva & L. S. Gordo, 2014. Otolith shape analysis as a tool for stock discrimination of forkbeard (Phycis phycis) in the Northeast Atlantic. Hydrobiologia 728: 103–110.CrossRefGoogle Scholar
  51. Vignon, M. & F. Morat, 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology-Progress Series 411: 231–241.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Biodiversity and Evolutionary Genomics (LBEG)KU LeuvenLouvainBelgium
  2. 2.Institute for Agricultural and Fisheries ResearchOstendBelgium
  3. 3.Operational Directorate Natural Environment (OD Nature)Royal Belgian Institute of Natural Sciences (RBINS)BrusselsBelgium
  4. 4.PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBEPerpignanFrance
  5. 5.Laboratoire d’Excellence «CORAIL»MooréaFrench Polynesia
  6. 6.Ifremer, Fisheries LaboratorySclerochronology CentreBoulogneFrance
  7. 7.Flanders Marine Institute (VLIZ)OstendBelgium

Personalised recommendations