Advertisement

Hydrobiologia

, Volume 826, Issue 1, pp 233–246 | Cite as

Acidification, stress, and detrital processing: implications for ecosystem function in headwater streams

  • H. Maurice ValettEmail author
  • Damon T. Ely
Primary Research Paper

Abstract

Environmental influences like acidification promote stress at the ecosystem level that manifests as reduction in metabolic and biogeochemical efficiency. Headwater streams along a chronic acidity gradient were assessed to explore how stress alters microbial abundance and activity and their influence on ecosystem structure and function. Streams draining deciduous forests were investigated during autumn when channels were filled by leaf litter. Whole-system measures of respiration were coupled to estimates of fungal biomass in leaf biofilms to generate an ecosystem-level measure of metabolic efficiency (qCO2E, g CO2–C g C−1 d−1). Stable isotope releases of nitrate nitrogen (15N–NO3) were performed to address nitrate uptake (\({\text{U}}_{{{\text{NO}}_{ 3} }}\)) across streams. Fungal stocks decreased across five streams as pH declined (6.98–5.34). Whole-system respiration decreased fivefold with increasing acidity, while qCO2E did not respond consistently to acidification, but was correlated with stream temperature. Across streams, concentrations of nitrogen (N) were low and \({\text{U}}_{{{\text{NO}}_{ 3} }}\) related to nutrient availability and not to stream acidity. Results illustrate that acidification alters ecosystem processes through influences on microbial abundance and metabolic activity, while scarce N availability and low \({\text{U}}_{{{\text{NO}}_{ 3} }}\) characterized biogeochemical behavior during autumnal periods of maximal detrital stocks.

Keywords

Metabolic efficiency N uptake Stress Acidification Streams Fungi 

Notes

Acknowledgements

We thank JR Webster, E.F. Benfield, B.R. Niederlhener, D. Von Schiller, and the students of the Virginia Tech Stream Team for conceptual and operational support. HM Valett also thanks Marc Peipoch for comments on an earlier draft of the manuscript. This research was supported by National Science Foundation (NSF) awards DEB080836 to DT Ely and HM Valett, DEB0841809 to KS Simon and HM Valett, NSF EPSCoR Track-1 NSF-IIA-1443108, and the Montana Institute on Ecosystems. The datasets generated and/or analyzed during the current study are available through DataONE (https://www.dataone.org/).

Supplementary material

10750_2018_3735_MOESM1_ESM.pptx (361 kb)
Supplementary material 1 (PPTX 361 kb)

References

  1. Bååth, E. & T. H. Anderson, 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35: 955–963.CrossRefGoogle Scholar
  2. Baudoin, J. M., F. Guérold, V. Felten, E. Chauvet, P. Wagner & P. Rousselle, 2008. Elevated aluminum concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microbial Ecology 56: 260–269.CrossRefGoogle Scholar
  3. Bergfur, J. & N. Friberg, 2012. Trade-offs between fungal and bacterial respiration along gradients in temperature, nutrients and substrata: Experiments with stream derived microbial communities. Fungal ecology 5: 46–52.CrossRefGoogle Scholar
  4. Blagodatskaya, E. V. & T.-H. Anderson, 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry 30: 1269–1274.CrossRefGoogle Scholar
  5. Bott, T. L., J. D. Newbold & D. B. Arscott, 2006. Ecosystem metabolism in Piedmont streams: Reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9: 398–421.CrossRefGoogle Scholar
  6. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRefGoogle Scholar
  7. Charcosset, J.-Y. & E. Chauvet, 2001. Effect of culture conditions on ergosterol as an indicator of biomass in aquatic hyphomycetes. Applied and Environmental Microbiology 67: 2051–2055.CrossRefGoogle Scholar
  8. Cheever, B. M. & J. R. Webster, 2014. Effects of consumers and nitrogen availability on heterotrophic microbial activity during leaf decomposition in headwater streams. Freshwater Biology 59: 1768–1780.CrossRefGoogle Scholar
  9. Cheever, B. M., E. B. Kratzer & J. R. Webster, 2012. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Science 31: 133–147.CrossRefGoogle Scholar
  10. Clivot, H., M. Danger, C. Pagnout, P. F. Wagner, P. Rousselle, P. Poupin & F. Guérold, 2013. Impaired leaf litter processing in acidified streams. Microbial Ecology 65: 1–11.CrossRefGoogle Scholar
  11. Cornut, J., H. Clivot, E. Chauvet, A. Elger, C. Pagnout & F. Guérold, 2012. Effect of acidification on leaf litter decomposition in benthic and hyporheic zones of woodland streams. Water Research 46: 6430–6444.CrossRefGoogle Scholar
  12. Crain, C. M., K. Kroeker & B. S. Halpern, 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11: 1304–1315.CrossRefGoogle Scholar
  13. Cross, W. F., J. M. Hood, J. P. Benstead, A. D. Huryn & D. Nelson, 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology 21: 1025–1040.CrossRefGoogle Scholar
  14. Dangles, O. & E. Chauvet, 2003. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Research 37: 533–538.CrossRefGoogle Scholar
  15. Dangles, O. & F. Guerold, 1998. A comparative study of beech leaf breakdown, energetic content, and associated fauna in acidic and non-acidic streams. Archiv für Hydrobiologie 144: 25–39.CrossRefGoogle Scholar
  16. Dangles, O., M. O. Gessner, F. Guerold & E. Chauvet, 2004a. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. Journal of Applied Ecology 41: 365–378.CrossRefGoogle Scholar
  17. Dangles, O., B. Malmqvist & H. Laudon, 2004b. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104: 149–155.CrossRefGoogle Scholar
  18. Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard & K. C. Weathers, 2001. Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies: the effects of acidic deposition in the northeastern United States include the acidification of soil and water, which stresses terrestrial and aquatic biota. BioScience 51: 180–198.CrossRefGoogle Scholar
  19. Ely, D. T., D. Von Schiller & H. M. Valett, 2010. Stream acidification increases nitrogen uptake by leaf biofilms: implications at the ecosystem scale. Freshwater Biology 55: 1337–1348.CrossRefGoogle Scholar
  20. Enquist, B. J., E. P. Economo, T. E. Huxman, A. P. Allen, D. D. Ignace & J. F. Gillooly, 2003. Scaling metabolism from organisms to ecosystems. Nature 423: 639–642.CrossRefGoogle Scholar
  21. Evans, C., J. Cullen, C. Alewell, J. Kopácek, A. Marchetto, F. Moldan, A. Prechtel, M. Rogora, J. Veselý & R. Wright, 2001. Recovery from acidification in European surface waters. Hydrology and Earth System Sciences Discussions 5: 283–298.CrossRefGoogle Scholar
  22. Ferreira, V. & E. Chauvet, 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–564.CrossRefGoogle Scholar
  23. Ferreira, V. & F. Guerold, 2017. Leaf litter decomposition as a bioassessment tool of acidification effects in streams: evidence from a field study and meta-analysis. Ecological Indicators 79: 382–390.CrossRefGoogle Scholar
  24. Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell, S. L. Johnson, S. K. Hamilton, J. Edmonds, W. K. Dodds & W. B. Bowden, 2002. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43: 55–66.CrossRefGoogle Scholar
  25. Fowler, D., R. Smith, J. Muller, G. Hayman & K. Vincent, 2005. Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environmental Pollution 137: 15–25.CrossRefGoogle Scholar
  26. Gessner, M. O. & E. Chauvet, 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59: 502–507.PubMedPubMedCentralGoogle Scholar
  27. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  28. Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J.-J. B. Dubois & C. L. Goodale, 2012. Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and the Environment 10: 365–372.CrossRefGoogle Scholar
  29. Griffith, M. & S. Perry, 1994. Fungal biomass and leaf litter processing in streams of different water chemistry. Hydrobiologia 294: 51–61.CrossRefGoogle Scholar
  30. Gulis, V. & K. Suberkropp, 2003. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Microbial Ecology 45: 11–19.CrossRefGoogle Scholar
  31. Helliwell, R. C., R. F. Wright, L. A. Jackson-Blake, R. C. Ferrier, J. Aherne, B. J. Cosby, C. D. Evans, M. Forsius, J. Hruska & A. Jenkins, 2014. Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. Environmental Science and Technology 48: 13280–13288.CrossRefGoogle Scholar
  32. Herlihy, A., P. Kaufmann, M. Church, P. Wigington, J. Webb & M. Sale, 1993. The effects of acidic deposition on streams in the Appalachian Mountain and piedmont region of the mid-Atlantic United States. Water Resources Research 29: 2687–2703.CrossRefGoogle Scholar
  33. Hildrew, A., C. R. Townsend, J. Francis & K. Finch, 1984. Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology 14: 323–328.CrossRefGoogle Scholar
  34. Hogsden, K. L. & J. S. Harding, 2011. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science 31: 108–120.CrossRefGoogle Scholar
  35. Huryn, A. D., J. P. Benstead & S. M. Parker, 2014. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95: 2826–2839.CrossRefGoogle Scholar
  36. Jenkins, G. B., G. Woodward & A. G. Hildrew, 2013. Long-term amelioration of acidity accelerates decomposition in headwater streams. Global Change Biology 19: 1100–1106.CrossRefGoogle Scholar
  37. Kahl, J. S., S. A. Norton, T. A. Haines, E. A. Rochette, R. H. Heath & S. C. Nodvin, 1992. Mechanisms of episodic acidification in low-order streams in Maine, USA. Environmental Pollution 78: 37–44.CrossRefGoogle Scholar
  38. Kopáček, J., J. Hejzlar, J. Kaňa, S. A. Norton & E. Stuchlík, 2015. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification. Environmental Science & Technology 49: 2895–2903.CrossRefGoogle Scholar
  39. Layer, K., J. O. Riede, A. G. Hildrew & G. Woodward, 2010. Food web structure and stability in 20 streams across a wide pH gradient. Advances in Ecological Research 42: 265–299.CrossRefGoogle Scholar
  40. Layer, K., A. G. Hildrew & G. Woodward, 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171: 459–471.CrossRefGoogle Scholar
  41. Lovett, G. M., T. H. Tear, D. C. Evers, S. E. Findlay, B. J. Cosby, J. K. Dunscomb, C. T. Driscoll & K. C. Weathers, 2009. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Annals of the New York Academy of Sciences 1162: 99–135.CrossRefGoogle Scholar
  42. Lynch, J. A., V. C. Bowersox & J. W. Grimm, 2000. Changes in sulfate deposition in eastern USA following implementation of phase I of title IV of the clean air act amendments of 1990. Atmospheric Environment 34: 1665–1680.CrossRefGoogle Scholar
  43. Marzolf, E. R., P. J. Mulholland & A. D. Steinman, 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Canadian Journal of Fisheries and Aquatic Sciences 51: 1591–1599.CrossRefGoogle Scholar
  44. Matthaei, C. D., J. J. Piggott & C. R. Townsend, 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. Journal of Applied Ecology 47: 639–649.CrossRefGoogle Scholar
  45. Methvin, B. R. & K. Suberkropp, 2003. Annual production of leaf-decaying fungi in 2 streams. Journal of the North American Benthological Society 22: 554–564.CrossRefGoogle Scholar
  46. Mulholland, P. M., J. D. Newbold, J. W. Elwood, L. A. Ferren & J. R. Webster, 1985. Phosphorus spiralling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.CrossRefGoogle Scholar
  47. Mulholland, P. J., A. V. Palumbo, J. W. Elwood & A. D. Rosemond, 1987. Effects of acidification on leaf decomposition in streams. Journal of the North American Benthological Society 6: 147–158.CrossRefGoogle Scholar
  48. Mulholland, P. J., C. T. Driscoll, J. W. Elwood, M. P. Osgood, A. V. Palumbo, A. D. Rosemond, M. E. Smith & C. Schofield, 1992. Relationships between stream acidity and bacteria, macroinvertebrates, and fish: a comparison of north temperate and south temperate mountain streams, USA. Hydrobiologia 239: 7–24.CrossRefGoogle Scholar
  49. Mulholland, P. J., A. M. Helton, G. C. Poole, R. O. Hall, S. K. Hamilton, B. J. Peterson, J. L. Tank, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, S. E. G. Findlay, S. V. Gregory, N. B. Grimm, S. L. Johnson, W. H. McDowell, J. L. Meyer, H. M. Valett, J. R. Webster, C. P. Arango, J. J. Beaulieu, M. J. Bernot, A. J. Burgin, C. L. Crenshaw, L. T. Johnson, B. R. Niederlehner, J. M. O’Brien, J. D. Potter, R. W. Sheibley, D. J. Sobota & S. M. Thomas, 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452: 202–205.CrossRefGoogle Scholar
  50. Munday, P. L., N. E. Crawley & G. E. Nilsson, 2009. Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series 388: 235–242.CrossRefGoogle Scholar
  51. Niyogi, D. K., W. M. J. Lewis & D. M. McKnight, 2001. Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications 11: 506–516.CrossRefGoogle Scholar
  52. Niyogi, D. K., D. M. McKnight & W. M. Lewis Jr., 2002. Fungal communities and biomass in mountain streams affected by mine drainage. Archiv für Hydrobiologie 155: 255–271.CrossRefGoogle Scholar
  53. Odum, E. P., 1985. Trends expected in stressed ecosystems. Bioscience 35: 419–422.CrossRefGoogle Scholar
  54. Ormerod, S., M. Dobson, A. Hildrew & C. Townsend, 2010. Multiple stressors in freshwater ecosystems. Freshwater Biology 55: 1–4.CrossRefGoogle Scholar
  55. Pascoal, C. & F. Cássio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology 70: 5266–5273.CrossRefGoogle Scholar
  56. Pastor, A., Z. G. Compson, P. Dijkstra, J. L. Riera, E. Marti, F. Sabater, B. A. Hungate & J. C. Marks, 2014. Stream carbon and nitrogen supplements during leaf litter decomposition: contrasting patterns for two foundation species. Oecologia 176: 1111–1121.CrossRefGoogle Scholar
  57. Piggott, J. J., C. R. Townsend & C. D. Matthaei, 2015a. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Global Change Biology 21: 1887–1906.CrossRefGoogle Scholar
  58. Piggott, J. J., C. R. Townsend & C. D. Matthaei, 2015b. Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution 5: 1538–1540.CrossRefGoogle Scholar
  59. Roberts, B. J., P. J. Mulholland & W. R. Hill, 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10: 558–606.CrossRefGoogle Scholar
  60. Rousk, J., P. C. Brookes & E. Bååth, 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75: 1589–1596.CrossRefGoogle Scholar
  61. Rousk, J., P. C. Brookes & E. Bååth, 2010a. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biology and Biochemistry 42: 926–934.CrossRefGoogle Scholar
  62. Rousk, J., E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight & N. Fierer, 2010b. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4: 1340–1351.CrossRefGoogle Scholar
  63. Schimel, J. P., T. C. Balser & M. Wallenstein, 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386–1394.CrossRefGoogle Scholar
  64. Sigman, D. M., M. A. Altabet, R. Michener, D. C. McCorkle, B. Fry & R. M. Holmes, 1997. Natural abundance-level measurement of nitrogen isotopic composition of oceanic nitrate and adaptation of the ammonium diffusion method. Marine Chemistry 57: 227–242.CrossRefGoogle Scholar
  65. Simon, K. S., M. A. Simon & E. F. Benfield, 2009. Variation in ecosystem function in Appalachian streams along an acidity gradient. Ecological Applications 19: 1147–1160.CrossRefGoogle Scholar
  66. Skjelkvåle, B., J. Stoddard, D. Jeffries, K. Tørseth, T. Høgåsen, J. Bowman, J. Mannio, D. Monteith, R. Mosello & M. Rogora, 2005. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution 137: 165–176.CrossRefGoogle Scholar
  67. Smith, S. V. & J. T. Hollibaugh, 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs 67: 509–533.CrossRefGoogle Scholar
  68. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.Google Scholar
  69. Suberkropp, K., V. Gulis, A. D. Rosemond & J. P. Benstead, 2010. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnology and Oceanography 55: 149–160.CrossRefGoogle Scholar
  70. Tank, J. L., J. R. Webster, E. F. Benfield & R. L. Sinsabaugh, 1998. Effects of leaf litter exclusion on microbial enzyme activity associted with wood biofilms in streams. Journal of the North American Benthological Society 17: 95–103.CrossRefGoogle Scholar
  71. Townsend, C. R., S. S. Uhlmann & C. D. Matthaei, 2008. Individual and combined responses of stream ecosystems to multiple stressors. Journal of Applied Ecology 45: 1810–1819.CrossRefGoogle Scholar
  72. Valett, H. M., S. A. Thomas, P. J. Mulholland, J. R. Webster, C. N. Dahm, C. S. Fellows, C. L. Crenshaw & C. G. Peterson, 2008. Endogenous and exogenous control of nitrate uptake in headwater streams. Ecology 89: 3515–3527.CrossRefGoogle Scholar
  73. Wardle, D. A. & A. Ghani, 1995. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry 27: 1601–1610.CrossRefGoogle Scholar
  74. Webster, J. R. & H. M. Valett, 2007. Solute dynamics. In Hauer, F. R. & G. A. Lamberti (eds), Methods in stream ecology: field and laboratory exercises, 2nd ed. Academic Press, Burlington, MA: 169–186.CrossRefGoogle Scholar
  75. Wright, R. F., T. Larssen, L. Camarero, B. J. Cosby, R. C. Ferrier, R. Helliwell, M. Forsius, A. Jenkins, J. Kopáěek, V. Majer, F. Moldan, M. Posch, M. Rogora & W. Schöpp, 2005. Recovery of acidified European surface waters. Environmental Science and Technology 39: 64A–72A.CrossRefGoogle Scholar
  76. Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward & J. M. Montoya, 2010. Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2117–2126.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Division of Biological SciencesUniversity of MontanaMissoulaUSA
  2. 2.Department of BiologyState University of New York OrangeMiddletownUSA

Personalised recommendations