Phylogenomics of pike cichlids (Cichlidae: Crenicichla) of the C. mandelburgeri species complex: rapid ecological speciation in the Iguazú River and high endemism in the Middle Paraná basin

  • Lubomír Piálek
  • Edward Burress
  • Klára Dragová
  • Adriana Almirón
  • Jorge Casciotta
  • Oldřich Říčan


The Crenicichla mandelburgeri species complex from the Middle Paraná basin is a diverse group of cichlid species and contains all known ecomorphs found within the entire genus Crenicichla. Here, we study the phylogenetic relationships within the C. mandelburgeri species complex using ddRAD sequencing with focus on its two candidate species flocks endemic to the Iguazú and Urugua-í Rivers, and on two putative sympatric species in the Piray Guazú River. These species flocks include four and three syntopic species, respectively, which are strongly adapted to different trophic niches and include derived ecomorphs of Crenicichla (molluscivores, a periphyton grazer, and a crevice-feeding thick-lipped invertivore). Our phylogenomic analyses strongly support monophyly and rapid diversification of the Iguazú species flock, but reveal more complex evolutionary histories in the Urugua-í and Piray Guazú tributaries. Most species in the Middle Paraná, including one species in the Urugua-í and both species in the Piray Guazú show cytonuclear discordance, and in both of these tributaries, we also found hybridization in one of the resident species. Population-level analyses reveal complete isolation of the Iguazú species and coupled with their dramatic ecological diversity, this radiation exemplifies characteristics of a species flock that arose via ecological speciation.


Convergence Diversification Parallel evolution Species flock 



We would like to thank Štěpánka Říčanová, Radka Piálková, Lukáš Drag, and Jan Štefka, all from the University of South Bohemia, and Yamila P. Cardoso from Universidad Nacional de La Plata for their kind help and assistance during field expeditions. We also thank Administración de Parques Nacionales and Ministerio de Ecología y Recursos Naturales Renovables de la provincia de Misiones for permissions to collect samples (Nos. NEA328 rnv3 and Res: 509/07, respectively). We are very grateful to Vladimír Beneš, Bianka Baying, and the EMBL Genomic Core Facility in Heidelberg (Germany) for their kind advice and technical support during the DNA library finalization and Illumina sequencing. The access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the program “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005) was highly appreciated as well as the access to the CERIT-SC computing and storage facilities provided under the program Center CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations, Reg. No. CZ. 1.05/3.2.00/08.0144. Financial support was provided by the GAČR 14-28518P Grant of the Czech Science Foundation to L.P. and by Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Naturales y Museo (UNLP), and Administración de Parques Nacionales.

Supplementary material

10750_2018_3733_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1705 kb)
10750_2018_3733_MOESM2_ESM.pdf (46 kb)
Supplementary material 2 (PDF 46 kb)
10750_2018_3733_MOESM3_ESM.pdf (561 kb)
Supplementary material 3 (PDF 561 kb)
10750_2018_3733_MOESM4_ESM.pdf (40 kb)
Supplementary material 4 (PDF 40 kb)
10750_2018_3733_MOESM5_ESM.pdf (91 kb)
Supplementary material 5 (PDF 91 kb)
10750_2018_3733_MOESM6_ESM.xlsx (40 kb)
Supplementary material 6 (XLSX 40 kb)


  1. Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio Jr., 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Health Management 10: 174–186.CrossRefGoogle Scholar
  2. Alexander, D. H., J. Novembre & K. Lange, 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19: 1655–1664.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews, S., 2010. FastQC. A quality control tool for high throughput sequence data [available on internet at].
  4. Andrews, K. R., J. M. Good, M. R. Miller, G. Luikart & P. A. Hohenlohe, 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17: 81–92.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barluenga, M., K. N. Stolting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439: 719–723.CrossRefPubMedGoogle Scholar
  6. Baumgartner, G., C. S. Pavanelli, D. Baumgartner, A. G. Bifi, T. Debona & V. A. Frana, 2012. Peixes do baixo rio Iguaçu. Eduem, Maringá: 203.CrossRefGoogle Scholar
  7. Brawand, D., C. E. Wagner, Y. I. Li, et al., 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375–381.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bryan, S. E., I. U. Peate, D. W. Peate, S. Self, D. A. Jerram, M. R. Mawby, R. Michael, J. S. Marsh & J. A. Miller, 2010. The largest volcanic eruptions on Earth. Earth-Science Reviews 102: 207–229.CrossRefGoogle Scholar
  9. Burress, E. D., A. Duarte, W. S. Serra, M. Loueiro, M. M. Gangloff & L. Siefferman, 2013. Functional diversification within a predatory species flock. PLoS ONE 8: 1–10.CrossRefGoogle Scholar
  10. Burress, E. D., A. Duarte, W. S. Serra & M. Loureiro, 2015. Rates of piscivory predict pharyngeal jaw morphology in a piscivorous lineage of cichlid fishes. Ecology of Freshwater Fish 25: 590–598.CrossRefGoogle Scholar
  11. Burress, E. D., F. Alda, A. Duarte, M. Loureiro, J. W. Armbruster & P. Chakrabarty, 2018a. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. Journal of Evolutionary Biology 31: 14–30.CrossRefPubMedGoogle Scholar
  12. Burress, E. D., L. Piálek, J. R. Casciotta, A. Almirón, M. Tan, J. W. Armbruster & O. Říčan, 2018b. Island- and lake-like parallel adaptive radiations replicated in rivers. Proceedings of the Royal Society B 285: 20171762.CrossRefPubMedGoogle Scholar
  13. Card, D., 2015. RADpipe. GitHub Repository. Scholar
  14. Casciotta, J., A. Almirón, L. Piálek, S. Gómez & O. Říčan, 2010. Crenicichla ypo (Teleostei: Cichlidae), a new species from the middle Paraná basin in Misiones, Argentina. Neotropical Ichthyology 8: 643–648.CrossRefGoogle Scholar
  15. Casciotta, J., A. Almirón, D. Aichino, S. Gómez, L. Piálek & O. Říčan, 2013. Crenicichla taikyra (Teleostei: Cichlidae), a new species of pike cichlid from the middle rio Parana, Argentina. Zootaxa 3721: 379–386.CrossRefPubMedGoogle Scholar
  16. Casciotta, J., A. Almirón, L. Ciotek, P. Giorgis, O. Říčan, L. Piálek, K. Dragová, Y. Croci, M. Montes, J. Iwaszkiw & A. Puentes, 2016. Visibilizando lo invisible. Un relevamiento de la diversidad de peces del Parque Nacional Iguazú, Misiones, Argentina. Historia Natural (Tercera Serie) 6: 5–77.Google Scholar
  17. Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko & J. H. Postlethwait, 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3 (Bethesda) 1: 171–182.CrossRefGoogle Scholar
  18. Chifman, J. & L. Kubatko, 2014. Quartet-inference from SNP data under the coalescent model. Bioinformatics 30: 3317–3324.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elmer, K. R., S. Fan, H. Kusche, M. L. Spreitzer, A. F. Kautt, P. Franchini & A. Meyer, 2014. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nature Communications 5: 5168.CrossRefPubMedGoogle Scholar
  20. Farias, I. P., G. Ortí, I. Sampaio, H. Schneider & A. Meyer, 1999. Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. Journal of Molecular Evolution 48: 703–711.CrossRefPubMedGoogle Scholar
  21. Farias, I. P., G. Ortí & A. Meyer, 2000. Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. Journal of Experimental Zoology 288: 76–92.CrossRefPubMedGoogle Scholar
  22. Farias, I. P., G. Ortí, I. Sampaio, H. Schneider & A. Meyer, 2001. The cytochrome b gene as a phylogenetic marker: the limits of resolution for analyzing relationships among cichlid fishes. Journal of Molecular Evolution 53: 89–103.CrossRefPubMedGoogle Scholar
  23. Fodor, R. V., E. M. McKee & A. Roisenberg, 1989. Age distribution of Serra Geral (Paraná) flood basalts, southern Brazil. Journal of South American Earth Sciences 2: 343–349.CrossRefGoogle Scholar
  24. Ford, A. G., K. K. Dasmahapatra, L. Rüber, K. Gharbi, T. Cezard & J. J. Day, 2015. High levels of interspecific gene flow in an endemic cichlid fish adaptive radiation from an extreme lake environment. Molecular Ecology 24: 3421–3440.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frota, A., E. V. Real Gonçalves, G. C. Deprá & W. J. da Graça, 2016. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List 12: 1995.CrossRefGoogle Scholar
  26. Fruciano, C., P. Franchini, V. Kovacova, K. R. Elmer, F. Henning & A. Meyer, 2016. Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nature Communications 7: 12736.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Geiger, M. F., J. K. McCrary & U. K. Schliewen, 2010. Not a simple case: a first comprehensive phylogenetic hypothesis for the Midas cichlid complex in Nicaragua (Teleostei: Cichlidae: Amphilophus). Molecular Phylogenetics and Evolution 56: 1011–1024.CrossRefPubMedGoogle Scholar
  28. Greenwood, P. H., 1984. What is a species flock. In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. Orono Press, Maine: 13–19.Google Scholar
  29. Ilves, K. L., D. Torti & H. López-Fernández, 2017. Exon-based phylogenomics strengthens the phylogeny of Neotropical cichlids and identifies remaining conflicting clades (Cichliformes: Cichlidae: Cichlinae). Molecular Phylogenetics and Evolution 118: 232–243.CrossRefPubMedGoogle Scholar
  30. Jones, J. C., S. Fan, P. Franchini, M. Schartl & A. Meyer, 2013. The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Molecular Ecology 22: 2986–3001.CrossRefPubMedGoogle Scholar
  31. Júlio Júnior, H. F., C. D. Tós, A. A. Agostinho & C. S. Pavanelli, 2009. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin. Neotropical Ichthyology 7: 709–718.CrossRefGoogle Scholar
  32. Kautt, A. F., G. Machado-Schiaffino, J. Torres-Dowdall & A. Meyer, 2016. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecology and Evolution 6: 5342–5357.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Mentjies & A. Drummond, 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Keller, I., C. E. Wagner, L. Greuter, S. Mwaiko, O. M. Selz, A. Sivasundar, S. Wittwer & O. Seehausen, 2013. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Molecular Ecology 22: 2848–2863.CrossRefPubMedGoogle Scholar
  35. Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics 5: 288–298.CrossRefPubMedGoogle Scholar
  36. Kullander, S. O., 1998. A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). In Malabarba, L. R., R. E. Reis, R. P. Vari, Z. M. S. Lucena & C. A. S. Lucena (eds), Phylogeny and classification of Neotropical fishes. Edipucrs, Porto Alegre: 461–498.Google Scholar
  37. Kullander, S. O., 2009. Crenicichla mandelburgeri, a new species of cichlid fish (Teleostei: Cichlidae) from the Paraná river drainage in Paraguay. Zootaxa 50: 41–50.Google Scholar
  38. Kullander, S. O. & C. A. S. Lucena, 2013. Crenicichla gillmorlisi, a new species of cichlid fish (Teleostei: Cichlidae) from the Paraná river drainage in Paraguay. Zootaxa 3641: 149–164.CrossRefPubMedGoogle Scholar
  39. Kullander, S. O., M. Norén, G. B. Friðriksson & C. A. S. Lucena, 2010. Phylogenetic relationships of species of Crenicichla (Teleostei: Cichlidae) from southern South America based on the mitochondrial cytochrome b gene. Journal of Zoological Systematics and Evolutionary Research 48: 248–258.Google Scholar
  40. Langeani, F., R. M. C. Castro, O. T. Oyakawa, O. A. Shibatta, C. S. Pavanelli & L. Casatti, 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica 7: 181–197.CrossRefGoogle Scholar
  41. Langmead, B. & S. L. Salzberg, 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lawson, D. J., G. Hellenthal, S. Myers & D. Falush, 2012. Inference of population structure using dense haplotype data. PLoS Genetics 8: 11–17.CrossRefGoogle Scholar
  43. Lischer, H. E., L. Excoffier & G. Heckel, 2014. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of Microtus voles. Molecular Biology and Evolution 31: 817–831.CrossRefPubMedGoogle Scholar
  44. López-Fernández, H., K. O. Winemiller & R. L. Honeycutt, 2010. Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae). Molecular Phylogenetics and Evolution 55: 1070–1086.CrossRefPubMedGoogle Scholar
  45. Lucena, C. A. S., 2007. Two new species of the genus Crenicichla Heckel, 1840 from the upper rio Uruguay drainage (Perciformes: Cichlidae). Neotropical Ichthyology 5: 449–456.CrossRefGoogle Scholar
  46. Lucena, C. A. S. & S. O. Kullander, 1992. The Crenicichla (Teleostei: Cichlidae) species of the Uruguai River drainage in Brazil. Ichthyological Exploration of Freshwaters 3: 97–160.Google Scholar
  47. Machado-Schiaffino, G., A. F. Kautt, H. Kusche & A. Meyer, 2015. Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evolutionary Biology 15: 9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Malinsky, M., R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, E. A. Miska, R. Durbin, M. J. Genner & G. F. Turner, 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350: 1493–1498.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Malinsky, M., E. Trucchi, D. J. Lawson & D. Falush, 2018. RADpainter and fineRADstructure: population inference from RADseq Data. Molecular Biology and Evolution 35: 1284–1290.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mayr, E., 1984. Evolution of fish species flocks: a commentary. In Echelle, A. A. & I. Kornfield (eds), Evolution of fish species flocks. Orono Press, Maine: 3–12.Google Scholar
  51. O’Quin, K. E., J. E. Schulte, Z. Patel, N. Kahn, Z. Naseer, H. Wang, M. A. Conte & K. L. Carleton, 2012. Evolution of cichlid vision via trans-regulatory divergence. BMC Evolutionary Biology 12: 251.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Peterson, B. K., J. N. Weber, E. H. Kay, H. S. Fisher & H. E. Hoekstra, 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7: e37135.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Piálek, L., O. Říčan, A. Almirón & J. Casciotta, 2010. Crenicichla hu, a new species of cichlid fish (Teleostei: Cichlidae) from the Paraná basin in Misiones, Argentina. Zootaxa 2537: 33–46.Google Scholar
  54. Piálek, L., O. Říčan, J. Casciotta, A. Almirón & J. Zrzavý, 2012. Multilocus phylogeny of Crenicichla (Teleostei: Cichlidae), with biogeography of the C. lacustris group: species flocks as a model for sympatric speciation in rivers. Molecular Phylogenetics and Evolution 62: 46–61.CrossRefPubMedGoogle Scholar
  55. Piálek, L., K. Dragová, J. Casciotta, A. Almirón & O. Říčan, 2015. Description of two new species of Crenicichla (Teleostei: Cichlidae) from the Lower Iguazú River with a taxonomic reappraisal of C. iguassuensis, C. tesay and C. yaha. Historia Natural (Tercera Serie) 5: 5–27.Google Scholar
  56. Pickrell, J. K. & J. K. Pritchard, 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics 8: e1002967.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ploeg, A., 1991. Revision of the South American Cichlid Genus Crenicichla Heckel, 1840, with description of fifteen new species and consideration on speciesgroups, phylogeny and biogeography (Pisces, Perciformes, Cichlidae). Thesis. University Amsterdam, Amsterdam.Google Scholar
  58. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.CrossRefPubMedGoogle Scholar
  59. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly & P. C. Sham, 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559–575.CrossRefPubMedGoogle Scholar
  60. Říčan, O., L. Piálek, K. Dragová & J. Novák, 2016. Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vertebrate Zoology 66: 1–102.Google Scholar
  61. Říčan, O., A. Almirón & J. Casciotta, 2017. Rediscovery of Crenicichla yaha (Teleostei: Cichlidae). Ichthyological Contributions of PecesCriollos 50: 1–8.Google Scholar
  62. Říčan, O., Š. Říčanová, K. Dragová, L. Piálek, A. Almirón & J. Casciotta, 2018. Species diversity in Gymnogeophagus (Teleostei: Cichlidae) and comparative biogeography of cichlids in the Middle Paraná basin, an emerging hotspot of fish endemism. Hydrobiologia. Scholar
  63. Rubin, B. E. R., R. H. Ree & C. S. Moreau, 2012. Inferring phylogenies from RAD sequence data. PLoS ONE 7: e33394.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Salzburger, W. & A. Meyer, 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91: 277–290.CrossRefPubMedGoogle Scholar
  65. Schliewen, U., K. Rassmann, M. Markmann, J. Markert, T. Kocher & D. Tautz, 2001. Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology 10: 1471–1488.CrossRefPubMedGoogle Scholar
  66. Schwarzer, J., B. Misof, S. N. Ifuta & U. K. Schliewen, 2011. Time and origin of cichlid colonization of the lower Congo rapids. PLoS ONE 6: e22380.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Seegers, L. & H. Tichy, 1999. The Oreochromis alcalicus flock (Teleostei: Cichlidae) from Lake Natron and Magadi, Tanzania and Kenya, with description of two new species. Ichthyological Explorations of Freshwaters 10: 97–146.Google Scholar
  68. Seehausen, O., 2015. Process and pattern in cichlid radiations – inferences for understanding unusually high rates of evolutionary diversification. New Phytologist 207: 304–312.CrossRefPubMedGoogle Scholar
  69. Smith, W. L., P. Chakrabarty & J. S. Sparks, 2008. Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae). Cladistics 24: 625–641.CrossRefGoogle Scholar
  70. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stawikowski, R. & U. Werner, 2004. Die Buntbarsche Amerikas. Band 3: Erdfresser, Hecht- und Kammbuntbarsche. Eugen Ulmer, Stuttgart.Google Scholar
  72. Sturmbauer, C., S. Baric, W. Salzburger, L. Rüber & E. Verheyen, 2001. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Molecular Biology and Evolution 18: 144–154.CrossRefPubMedGoogle Scholar
  73. Swofford, D. L., 2003. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4 [Computer Programme]. Sinauer Associates, Sunderland.Google Scholar
  74. Takahashi, T. & E. Moreno, 2015. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca. Molecular Phylogenetics and Evolution 93: 307–317.CrossRefPubMedGoogle Scholar
  75. Takahashi, T., T. Sota & M. Hori, 2013. Genetic basis of male colour dimorphism in a Lake Tanganyika cichlid fish. Molecular Ecology 22: 3049–3060.CrossRefPubMedGoogle Scholar
  76. Takahashi, T., N. Nagata & T. Sota, 2014. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Molecular Phylogenetics and Evolution 80: 137–144.CrossRefPubMedGoogle Scholar
  77. Varella, H. R., 2011. Revisão taxonômica das espécies de Crenicichla Heckel das bacias dos rios Paraná e Paraguai (Teleostei: Cichlidae). Dissertação de mestrado. Instituto de Biociências da Universidade de São PauloGoogle Scholar
  78. Verdu, C. F., E. Guichoux, S. Quevauvillers, O. Thier, Y. Laizet, A. Delcamp, F. Gévaudant, A. Monty, A. J. Porté, P. Lejeune, L. Lassois & S. Mariette, 2016. Dealing with paralogy in RADseq data: in silico detection and single nucleotide polymorphism validation in Robinia pseudoacacia L. Ecology and Evolution 6: 7323–7333.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wagner, C. E., L. J. Harmon & O. Seehausen, 2012. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487: 366–369.CrossRefPubMedGoogle Scholar
  80. Wagner, C. E., I. Keller, S. Wittwer, Oliver M. Selz, S. Mwaiko, L. Greuter, A. Sivasundar & O. Seehausen, 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology 22: 787–798.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  2. 2.Department of Evolution and EcologyUniversity of CaliforniaDavisUSA
  3. 3.División Zoología Vertebrados, Facultad de Ciencias Naturales y MuseoUNLPLa PlataArgentina
  4. 4.CIC, Comisión de Investigaciones Científicas de la Provincia de Buenos AiresLa PlataArgentina

Personalised recommendations