Advertisement

Hydrobiologia

, Volume 831, Issue 1, pp 119–132 | Cite as

Phytoplankton, periphyton, and zooplankton patterns in the pelagic and littoral regions of a large subtropical shallow lake

  • Luciana de Souza CardosoEmail author
  • Denise Matias de Faria
  • Luciane Oliveira Crossetti
  • David da Motta Marques
PHYTOPLANKTON & BIOTIC INTERACTIONS
  • 111 Downloads

Abstract

This study aimed at understanding the patterns among size structure of the phytoplankton, periphyton, and zooplankton considering the spatial variability (pelagic and littoral zones) in a subtropical large shallow polymictic lake (Lake Mangueira, southern Brazil). Water samples were gathered at intervals of 3, 5, and 15 days, for 60 days during summer 2012, for physical, chemical, and biological analyses (abundance and maximum linear dimension of subsurface zooplankton, phytoplankton, and glass slide-colonized periphyton) in both lake zones. A summer storm on the 20th day disturbed the periphyton succession in the littoral and pelagic zones. Phytoplankton size classes varied similarly to the smaller size of zooplankton in the pelagic zone, whereas most of periphyton size classes coincided with the larger zooplankton in the littoral zone, evidencing that zooplankton in Lake Mangueira may exploit both communities and both compartments (littoral and pelagic zones). The study demonstrated that the patterns of those communities are dynamic and closely related to the environmental variability in Lake Mangueira.

Keywords

Succession rate Disturbance Size structure Maximum linear dimension 

Notes

Acknowledgements

We thank the CAPES (Coordination of Improvement of Higher Education Personnel) for a doctoral grant awarded to the second author. We are grateful to CNPq and Dr. Lucia H.R. Rodrigues for logistical support; Dr. Lacina Maria de Freitas-Teixeira for providing algal raw data; the IPH (Hydraulic Research Institute, at UFRGS) technicians for sampling support; and Gustavo F. Hartmann for zooplankton counting. The English language review was done by Cary Collett.

Supplementary material

10750_2018_3729_MOESM1_ESM.pdf (77 kb)
Supplementary material 1 (PDF 77 kb)
10750_2018_3729_MOESM2_ESM.pdf (76 kb)
Supplementary material 2 (PDF 76 kb)
10750_2018_3729_MOESM3_ESM.pdf (76 kb)
Supplementary material 3 (PDF 76 kb)

References

  1. American Public Health Association (APHA), 2005. Standard methods for the examination of water and wastewater, Washington (DC).Google Scholar
  2. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr., 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.CrossRefGoogle Scholar
  3. Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111–136.CrossRefGoogle Scholar
  4. Beisner, B. E., 2001. Plankton community structure in fluctuating environments and the role of productivity. Oikos 95: 496–510.CrossRefGoogle Scholar
  5. Borduqui, M. & C. Ferragut, 2012. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia 683: 109–122.CrossRefGoogle Scholar
  6. Borics, G., B. Tóthmérész, G. Várbíro, I. Grigorszky, A. Czébely & J. Görgényi, 2016. Functional phytoplankton distribution in hypertrophic systems across water body size. Hydrobiologia 764: 81–90.CrossRefGoogle Scholar
  7. Burks, R. L., D. L. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costand benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  8. Cardoso, L. S. & D. Motta Marques, 2004. Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake—South of Brazil) and its relationship to hydrodynamic aspects. Hydrobiologia 518: 123–134.CrossRefGoogle Scholar
  9. Cardoso, L. de S., C. R. Fragoso Jr, R. S. Souza & D. Motta-Marques, 2012. Hydrodynamic control of plankton spatial and temporal heterogeneity in subtropical shallow lakes. In: Schulz, H. E, A. L. A. Simões & R. J. Lobosco (eds), Hydrodynamics-Natural Water Bodies. Rijeka: Intech Open Access Publisher: 27–48.Google Scholar
  10. Carrick, H. L., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology & Oceanography 38: 1179–1192.CrossRefGoogle Scholar
  11. Cattaneo, A., M. De Sève, G. Morabito, R. Mosello & G. Tartari, 2011. Periphyton changes over 20 years of chemical recovery of Lake Orta, Italy: differential response to perturbation of littoral and pelagic communities. Journal of Limnology 70(2): 177–185.CrossRefGoogle Scholar
  12. Crossetti, L. O., L. de S. Cardoso, V. L. M. Callegaro, S. A. Silva, V. Werner, Z. Rosa & D. M. Marques, 2007. Influence of the hydrological changes on the phytoplankton structure and dynamics in a subtropical wetland-lake system. Acta Limnologica Brasiliensia 19: 315–329.Google Scholar
  13. Crossetti, L. O., V. Becker, L. de Souza Cardoso, L. R. Rodrigues, L. S. Costa & D. M. L. Motta-Marques, 2013a. Is phytoplankton functional classification a suitable tool to investigate spatial heterogeneity in a subtropical shallow lake? Limnologica 43: 157–163.CrossRefGoogle Scholar
  14. Crossetti, L. O., C. Stenger-Kovács & J. Padisák, 2013b. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia 716: 87–101.CrossRefGoogle Scholar
  15. Crossetti, L. O., F. Schneck, L. M. Freitas-Teixeira & D. Motta-Marques, 2014. The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil). Acta Limnologica Brasiliensia 26: 111–118.CrossRefGoogle Scholar
  16. DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of Cyanobacteria. Limnology and Oceanography 46: 2054–2060.CrossRefGoogle Scholar
  17. Faria, D. M., L. de Souza Cardoso & D. da Motta Marques, 2017. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788: 267–280.CrossRefGoogle Scholar
  18. Finkler Ferreira, T., L. O. Crossetti, D. da Motta Marques, L. Cardoso, C. R. Fragoso Jr. & E. H. Van Nes, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69: 142–154.CrossRefGoogle Scholar
  19. Freitas-Teixeira, L. M., J. E. Bohnenberger, L. H. R. Rodrigues, U. H. Schulz, D. Motta-Marques & L. O. Crossetti, 2016. Temporal variability determines phytoplankton structure over spatial organization in a large shallow heterogeneous subtropical lake. Inland Waters 6: 325–335.CrossRefGoogle Scholar
  20. Gazulha, V., M. Montú, D. M. L. Motta-Marques & C. C. Bonecker, 2011. Effects of natural banks of free-floating plants on zooplankton community in a shallow subtropical lake in Southern Brazil. Brazilian Archives of Biology and Technology 54: 745–754.CrossRefGoogle Scholar
  21. Gołdyn, R. & K. Kowalczewska-Madura, 2008. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. Journal of Plankton Research 30: 33–42.CrossRefGoogle Scholar
  22. González-Sagrario, M. A. & E. Balseiro, 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology 55: 2153–2166.CrossRefGoogle Scholar
  23. Havens, K. E. & J. R. Beaver, 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia 703: 177–187.CrossRefGoogle Scholar
  24. Havens, K. E., T. L. East, R. H. Meeker, W. P. Davis & A. D. Steinman, 1996. Phytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. Journal of Plankton Research 18(4): 551–566.CrossRefGoogle Scholar
  25. Havens, K. E., J. R. Beaver & T. L. East, 2011. Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668: 49–60.CrossRefGoogle Scholar
  26. Iglesias, C., G. Goyenola, N. Mazzeo, M. Meerhoff, E. Rodo & E. Jeppesen, 2007. Horizontal dynamics of zooplankton in subtropical Lake Blanca (Uruguay) hosting multiple zooplankton predators and aquatic plant refuges. Hydrobiologia 584: 179–189.CrossRefGoogle Scholar
  27. Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. J. de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of smallbodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.CrossRefGoogle Scholar
  28. Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Hydrobiologia 109: 445–454.Google Scholar
  29. Kist, D. L., L. de Souza Cardoso & D. Motta Marques, 2011. Variação sazonal na forma de controle de bacterioplâncton em uma lagoa rasa subtropical In: Associação Brasileira de Recursos Hídricos (ABRH), Anais do XIX Simpósio Brasileiro de Recursos Hídricos: 1–10.Google Scholar
  30. Lacerot, G., C. Kruk, M. Lürling & M. Scheffer, 2013. The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology 58: 494–503.CrossRefGoogle Scholar
  31. Lavoie, I., P. J. Dillon & S. Campeau, 2009. The effect of excluding diatom taxa and reducing taxonominc resolution on multivariate analysis and stream bioassessment. Ecological Indicators 9: 213–225.CrossRefGoogle Scholar
  32. Lewis Jr., W. M., 1978. Analysis of succession in a tropical phytoplankton community and a new measure of succession rate. American Naturalist 112: 401–414.CrossRefGoogle Scholar
  33. Lima, M. S., D. da Motta Marques, N. H. They, K. D. McMahon, L. R. Rodrigues, L. de Souza Cardoso & L. O. Crossetti, 2016. Contrasting factors drive within-lake bacterial community composition and functional traits in a large shallow subtropical lake. Hydrobiologia 778(1): 105–120.CrossRefGoogle Scholar
  34. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  35. Mackeret, F. J. H., J. Heron & J. F. Talling, 1989. Water analysis: some revised methods for limnologists. Freshwater Biological Association: 36–120.Google Scholar
  36. McCune, B. & M. J. Mefford, 2011. PC-ORD. Multivariate analysis of ecological data—Version 6.08. MJM Software Design, Gleneden Beach.Google Scholar
  37. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  38. Meerhoff, M., C. Iglesias, F. Teixeira-de-Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  39. Padisák, J., 1994. Identification of relevant time-scales in nonequilibrium community dynamics: conclusions from phytoplankton surveys. New Zealand Journal of Ecology 18: 169–176.Google Scholar
  40. Pappas, J. L. & E. F. Stoermer, 1996. Quantitative method for determining a representative algal sample count. Journal of Phycology 32: 693–696.CrossRefGoogle Scholar
  41. Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.CrossRefGoogle Scholar
  42. Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.CrossRefGoogle Scholar
  43. Rimet, F. & A. Bouchez, 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European Rivers. Knowledge and Management of Aquatic Ecosystems 406: 01.  https://doi.org/10.1051/kmae/2012018.CrossRefGoogle Scholar
  44. Rimet, F., A. Bouchez & B. Montuelle, 2015. Benthic diatoms and phytoplankton to assess nutrients in a large lake: complementary of their use in Lake Geneva (France-Switzerland). Ecological Indicators 53: 231–239.CrossRefGoogle Scholar
  45. Rodrigues, L. H. R., N. F. Fontoura & D. Motta Marques, 2014. Food-web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages. Marine and Freshwater Research 65: 453–465.CrossRefGoogle Scholar
  46. Roeder, D. R., 1977. Relationships between phytoplankton and periphyton communities in a central Iowa stream. Hydrobiologia 56: 145–151.CrossRefGoogle Scholar
  47. Rosa, L. M., L. S. Cardoso, L. O. Crossetti & D. Motta-Marques, 2017. Spatial and temporal variability of zooplankton-phytoplankton interactions in a large subtropical shallow lake dominated by non-toxic cyanobacteria. Marine and Freswater Research 68: 226–243.CrossRefGoogle Scholar
  48. Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.CrossRefGoogle Scholar
  49. Santana, L. M. & C. Ferragut, 2016. Strucutural changes of the phytoplankton and epiphyton in na urban hypereutrophic reservoir. Acta Limnologica Brasiliensia: 28–29.Google Scholar
  50. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.Google Scholar
  51. Schneck, F. & A. S. Mello, 2012. Hydrological disturbance overrides the effect of substratum roughness on the resistance and resilience of stream benhtic algae. Freshwater Biology 57: 1678–1688.CrossRefGoogle Scholar
  52. Siehoff, S., M. Hammers-Wirtz, T. Strauss & H. T. Ratte, 2009. Periphyton as alternative food source for the filter-feeding cladoceran Daphnia magna. Freshwater Biology 54: 15–23.CrossRefGoogle Scholar
  53. Sinistro, R., M. L. Sánchez, M. C. Marinone & I. Izaguirre, 2007. Experimental study of the zooplankton impact on the trophic structure of phytoplankton and the microbial assemblages in a temperate wetland (Argentina). Limnologica 37: 88–99.CrossRefGoogle Scholar
  54. Sládečková, A., 1962. Limnological investigation methods for the periphyton (“Aufwuchs”) community. Botanical Review 28(2): 286–350.CrossRefGoogle Scholar
  55. Sommer, U., J. Padisak, C. S. Reynolds & P. Juhasz-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.CrossRefGoogle Scholar
  56. Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Office of Water, US Environmental Protection Agency, Washington DC.Google Scholar
  57. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.Google Scholar
  58. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.CrossRefGoogle Scholar
  59. Work, W., K. Havens, B. Sharfstein & T. East, 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of Plankton Research 27: 357–372.CrossRefGoogle Scholar
  60. Zingel, P. & J. Haberman, 2008. A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): rotifers and crustaceans versus ciliates. Hydrobiologia 599: 153–159.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Luciana de Souza Cardoso
    • 1
    Email author
  • Denise Matias de Faria
    • 2
  • Luciane Oliveira Crossetti
    • 1
  • David da Motta Marques
    • 3
  1. 1.Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Botânica, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Instituto de Pesquisas HidráulicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations