Advertisement

Hydrobiologia

, Volume 826, Issue 1, pp 159–172 | Cite as

Testing the robustness of a coastal biodiversity data protocol in the Mediterranean: insights from the molluskan assemblages from the sublittoral macroalgae communities

  • Dimitris Poursanidis
  • Giorgos Chatzigeorgiou
  • Charalampos Dimitriadis
  • Drosos Koutsoubas
  • Christos Arvanitidis
Primary Research Paper

Abstract

The NaGISA project (Natural Geography Ιn Shore Areas) is a global initiative within the framework of the Census of Marine Life. The Mediterranean Sea has joined with 4 stations, 2 in Italy and 2 on the island of Crete, Greece. Two different sites were sampled during two consecutive years (2007 and 2008) by means of SCUBA diving. On the basis of the evidence offered by the collected material from the hard substrates of Crete, and the literature mined datasets concerning the molluscan assemblages, two main issues are investigated: (a) is the molluscan fauna sampled in the two NaGISA sites representative of the regional Mediterranean one? and (b), is the molluscan fauna sampled from the two sites randomly assembled from the regional species pool across different spatial scales? Although a strong tendency of the local molluskan composition to be randomly sampled from the regional pools at all scales, it is not possible to demonstrate with a degree of certainty whether their observed local diversity is independent of local and regional processes or if it is determined by a combination of the two acting either in concert or antagonistically.

Keywords

Hard substrate Reef ecosystem Eastern Mediterranean Crete Biodiversity 

Supplementary material

10750_2018_3725_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 17 kb)
10750_2018_3725_MOESM2_ESM.xlsx (12 kb)
Supplementary material 2 (XLSX 12 kb)

References

  1. Airoldi, L., 2003. The effects of sedimentation on rocky coastal assemblages. Oceanography and Marine Biology Annual Review 41: 161–236.Google Scholar
  2. Alexandrakis, G., 2014. Estimation of the climatic change impact to beach tourism using joined vulnerability analysis and econometric modelling. In ADAPTtoCLIMATE Conference, 27–28 Mar 2014, Nicosia Cyprus.Google Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.Google Scholar
  4. Antit, M. & A. Azzouna, 2012. Mollusques des milieu littoraux de La Baie de Tunis. Iberus 30(2): 107–133.Google Scholar
  5. Antoniadou, C. & C. Chintiroglou, 2007. Zoobenthos associated with the invasive red alga Womersleyella setacea (Rhodomelacea) in the northern Aegean Sea. Journal of the Marine Biological Association of the UK 87(3): 629–641.CrossRefGoogle Scholar
  6. Antoniadou, C., D. Koutsoubas & C. Chintiroglou, 2005. Molluscan fauna from infralittoral hard substrate assemblages in the North Aegean Sea. Belgian Journal of Zoology 135(2): 119–126.Google Scholar
  7. Antoniadou, C., E. Voultsiadou & C. Chintiroglou, 2006. Sublittoral megabenthos along cliffs of different profile (Aegean Sea, Eastern Mediterranean) Belg. Belgian Journal of Zoology 136(1): 69–79.Google Scholar
  8. Appeltans, W., S. T. Ahyong, G. Anderson, M. V. Angel, T. Artois, et al., 2012. The magnitude of global marine species diversity. Current Biology 22(23): 2189–2202.CrossRefGoogle Scholar
  9. Badalamenti, F., R. Chemello, et al., 2002. Are artificial reefs comparable to neighbouring natural rocky areas? A mollusc case study in the Gulf of Castellammare (NW Sicily). ICES Journal of Marine Science 59: S127–S131.CrossRefGoogle Scholar
  10. Balata, D., L. Piazzi & L. Benedetti-Cecchi, 2007. Sediment disturbance and loss of beta diversity on subtidal rocky reefs. Ecology 88: 2455–2461.CrossRefGoogle Scholar
  11. Bellan-Santini, D., 1969. Contribution a l’étude des peuplements infralittoraux sur substrat rocheux. Thèse Université Aix-Marseille, 294 pp.Google Scholar
  12. Bianchi, C. N., C. Morri, M. Chiantore, M. Montefalcone, V. Parravicini & A. Rovere, 2012. Mediterranean Sea Biodiversity Between the Legacy from the Past and a Future of Change. In Stambler, N. (ed.), Life in the Mediterranean Sea: A Look at Habitat Changes. Nova Science Publishers, New York: 1–55.Google Scholar
  13. Bosc, E., A. Bricaud & D. Antoine, 2004. Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations. Global Biogeochemical Cycles 18: GB1005.CrossRefGoogle Scholar
  14. Bussell, J. A., I. A. N. Lucas & R. Seed, 2007. Patterns in the invertebrate assemblage associated with Corallina officinalis in tide pools. Journal of the Marine Biological Association of United Kingdom 87: 383–388.CrossRefGoogle Scholar
  15. Chatzigeorgiou, G., S. Faulwetter, E. López, R. Sardá & C. Arvanitidis, 2012. Can coastal biodiversity measured in four Mediterranean sites be representative of the region? a test for the robustness of the NaGISA protocol by using the hard substrate syllid (Annelida, Polychaeta) taxo-communities as a surrogate. Hydrobiologia 691: 147–156.CrossRefGoogle Scholar
  16. Chatzigeorgiou, G., K. Keklikoglou, S. Faulwetter, F. Badalamenti, M.-S. Kitsos & C. Arvanitidis, 2017. Midlittoral polychaete communities in the Eastern Mediterranean Sea: new information from the implementation of the Natural Geography in Shore Areas (NaGISA) protocol and comparisons at local and regional scales. Marine Ecology 38: e12339.CrossRefGoogle Scholar
  17. Christie, H., K. M. Norderhaug & S. Fredriksen, 2009. Macrophytes as habitat for fauna. Marine Ecology Progress Series 396: 221–233.CrossRefGoogle Scholar
  18. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 18: 117–143.CrossRefGoogle Scholar
  19. Clarke, K. R. & R. M. Warwick, 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531.CrossRefGoogle Scholar
  20. Coll, M., C. Piroddi, J. Steenbeek, K. Kaschner, F. Ben Rais Lasram, et al., 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8): e11842.CrossRefGoogle Scholar
  21. COP 10, Conference of the Parties, 2014. Decision X/2: the strategic plan for biodiversity 2011-2020 and the Aichi biodiversity targets. http://www.cbd.int/decision/cop/?id=12268
  22. Edgar, G. J., C. Shaw, G. F. Watson & L. S. Hammond, 1994. Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western-Port, Victoria. Journal of Experimental Marine Biology and Ecology 176: 201–226.CrossRefGoogle Scholar
  23. Eleftheriou, A. & A. McIntyre, 2005. Methods for the Study of Marine Benthos. Blackwell Science, Oxford: 418.CrossRefGoogle Scholar
  24. EU, 2017. Interpretation Manual of European Union Habitats, version EUR 28. https://eunis.eea.europa.eu/references/2435
  25. Gianni, F., F. Bartolini, L. Airoldi, E. Ballesteros, P. Francour, P. Guidetti, A. Meinesz, T. Thibaut & L. Mangialajo, 2013. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Advances in Oceanography and Limnology 4(2): 83–101.  https://doi.org/10.1080/19475721.2013.845604.CrossRefGoogle Scholar
  26. Gingold, R., M. Mundo-Ocampo, O. Holovachov & A. Rocha-Olivares, 2010. The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Marine Biology 157: 1741–1753.CrossRefGoogle Scholar
  27. Gofas, S., D. Moreno, C. Salas, 2011. Moluscos marinos de Andalucía, Vol. I & II. Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga, Málaga. ISBN: 9788497473569, 342 (Vol. I) & 456 (Vol. II) pp.Google Scholar
  28. Heck, K. L. J. & G. S. Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4: 135–142.CrossRefGoogle Scholar
  29. Hiscock, K., 2014. Marine Biodiversity Conservation, A Practical Approach. Earthscan, Routledge, 318 pp. ISBN: 9780415723565.Google Scholar
  30. Iken, K. & B. Konar, 2003. Natural Geography in Nearshore Areas (NaGISA): the nearshore component of the Census of Marine Life. Gayana 67: 153–160.Google Scholar
  31. Karakassis, I. & A. Eleftheriou, 1997. The continental shelf of Crete: structure of macrobenthic communities. Marine Ecology Progress Series 160: 185–196.CrossRefGoogle Scholar
  32. Kocataş, A., 1978. İzmir Körfezi Kayalık Sahillerinin Bentk Formları Üzerinde Kalitatif ve Kantitatif Araştırmalar. (Contribution a l’Etude des peuplements des horizons superieurs de substrat rocheux du Golfe d’İzmir (Turquie)). E.Ü. Fen Fak. Monog. Ser. 12: 1–93.Google Scholar
  33. Kohn, A. J. & P. J. Leviten, 1976. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25: 199–210.CrossRefGoogle Scholar
  34. Koulouri, P., C. Dounas, C. Arvanitidis, D. Koutsoubas & A. Eleftheriou, 2006. Molluscan diversity along a Mediterranean soft bottom sublittoral ecotone. Scientia Marina. 70(5): 573–583.CrossRefGoogle Scholar
  35. Koutsoubas, D., A. Koukouras, I. Karakassis. & C. Dounas, 1992. Contribution to the knowledge of Gastropoda and Bivalvia (Mollusca) of Crete Island. Bolletino Malacologico 28(1–4): 69–82.Google Scholar
  36. Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.CrossRefGoogle Scholar
  37. Levin, N., M. Coll, S. Fraschetti, G. Gal, et al., 2014. Biodiversity data requirements for systematic conservation planning in the Mediterranean Sea. Marine Ecology Progress Series 508: 261–281.CrossRefGoogle Scholar
  38. Littler, M. M., D. R. Martz & D. S. Littler, 1983. Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment. Marine Ecology Progress Series 11: 129–139.CrossRefGoogle Scholar
  39. Milazzo, M., R. Chemello, F. Badalamenti & S. Riggio, 2000. Molluscan assemblages associated with photophilic algae in the Marine Reserve of Ustica Island (Lower Tyrrhenian Sea, Italy). Italian Journal of Zoology 67(3): 287–295.CrossRefGoogle Scholar
  40. Miloslavich, P., J. J. Cruz-Motta., E. Klein., K. Iken., V. Weinberger, et al., 2013. Large-scale spatial distribution patterns of Gastropod assemblages in rocky shores. PLoS ONE 8(8): e71396.CrossRefGoogle Scholar
  41. Moutin, T. & P. Raimbault, 2002. Primary production, carbon export and nutrients availability in Western and Eastern Mediterranean Sea in early summer 1996 (MINOS cruise). Journal of Marine Systems 33(273–288): 2002.Google Scholar
  42. Olabarria, C. & M. G. Chapman, 2001a. Comparison of patterns of spatial variation of microgastropods between two contrasting intertidal habitats. Marine Ecology Progress Series 220: 201–211.CrossRefGoogle Scholar
  43. Olabarria, C. & M. G. Chapman, 2001b. Habitat-associated variability in survival and growth of three species of microgastropods. Journal of the Marine Biological Association of the United Kingdom 81: 961–966.CrossRefGoogle Scholar
  44. Paine, R. T., 1974. Intertidal community structure. Oecologia 15: 93–120.CrossRefGoogle Scholar
  45. Pérès, J. & J. M. Picard, 1964. Nouveau manuel de bionomie benthique de la mer Méditerranée. Recueil des Travaux de la Station Marine d’Endoume 31(47): 1–131.Google Scholar
  46. Pitacco, V., M. Orlando-Bonaca, B. Mavric, A. Popovic & L. Lipej, 2014. Mollusc fauna associated with the Cystoseira algal associations in the Gulf of Trieste (Northern Adriatic Sea). Mediterranean Marine Science 15(2): 225–238.CrossRefGoogle Scholar
  47. Poursanidis, D. & D. Koutsoubas, 2015. A computerized database (CorMol) on the molluscan fauna from the Mediterranean reef ecosystems: Part I, the coralligenous formations. Quaternary International 390(10): 29–43.CrossRefGoogle Scholar
  48. Poursanidis, D., D. Koutsoubas, C. Arvanitidis & G. Chatzigeorgiou, 2016. ReefMedMol: Mollusca from the infralittoral rocky shores—the biocoenosis of photophilic algae—in the Mediterranean Sea. Biodiversity Data Journal. 4: e7516.CrossRefGoogle Scholar
  49. Psarra, S., A. Tselepides & L. Ignatiades, 2000. Primary Productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability. Progress in Oceanography 46: 187–204.CrossRefGoogle Scholar
  50. Rueda, J. L., S. Gofas., J. Urra. & C. Salas, 2009. A highly diverse molluscan assemblage associated with eelgrass beds (Zostera marina L.) in Europe: micro-habitat preference, feeding guilds and biogeographical distribution. Scientia Marina 73(4): 679–700.CrossRefGoogle Scholar
  51. Russo, G. F., S. Fraschetti & A. Terlizzi, 2002. Population ecology and production of Bittium latreillii (Gastropoda, Cerithidae) in a Posidonia oceanica seagrass bed. Italian Journal of Zoology 69: 215–222.CrossRefGoogle Scholar
  52. Sabelli B. & M. Taviani., 2014. The Making of the Mediterranean Molluscan Biodiversity. In Goffredo, S. & Z. Dubinsky (eds), The Mediterranean Sea: Its History and Present Challenges, XV, 678 p. 237 illus., 169 illus.Google Scholar
  53. Sala, E. & C. F. Boudouresque, 1997. The role of fishes in the organization of a Mediterranean sublittoral community: Algal communities. Journal of Experimental Marine Biology and Ecology 212(1): 25–44.CrossRefGoogle Scholar
  54. Schwarz, A. M., Mary de Winton & Ian Hawes, 2002. Species-specific depth zonation in New Zealand charophytes as a function of light availability. Aquatic Botany 72(3–4): 209–217.CrossRefGoogle Scholar
  55. Simboura, N., A. Zenetos, M. Thessalou-Legaki, M.-A. Pancucci & A. Nicolaidou, 1995. Benthic Communities of the lnfralittoral in the N. Sporades (Aegean Sea): a variety of biotopes encountered and analyzed. Marine Ecology 16: 283–306.CrossRefGoogle Scholar
  56. SoHelME, 2005. State of the Hellenic Marine Environment. In Papathanassiou, E. & A. Zenetos (eds), HCMR Publ.: 360 pp.Google Scholar
  57. Somerfield, P. J., C. Arvanitidis, S. Faulwetter, G. Chatzigeorgiou, et al., 2009. Assessing evidence for random assembly of marine benthic communities from regional species pools. Marine Ecology Progress Series 382: 279–286.  https://doi.org/10.3354/meps07934.CrossRefGoogle Scholar
  58. Stallings, C. D., A. Mickle, J. A. Nelson, M. G. McManus & C. C. Koenig, 2015. Faunal communities and habitat characteristics of the Big Bend seagrass meadows, 2009–2010. Ecology 96: 304.CrossRefGoogle Scholar
  59. Stewart, I. S. & C. Morhange, 2009. Coastal geomorphology and sea-level change. In Woodward, J. C. (ed.), The Physical Geography of the Mediterranean. Oxford University Press, Oxford: 385–413.Google Scholar
  60. Templado J., 2014. Future Trends of Mediterranean Biodiversity. In Goffredo, S. & Z. Dubinsky (eds), The Mediterranean Sea: Its History and Present Challenges, XV, 678 p. 237 illus., 169 illus. in color.Google Scholar
  61. Terlizzi, A., D. Scuderi, S. Fraschetti, P. Guidetti & F. Boero, 2003. Molluscs on subtidal cliffs: patterns of spatial distribution. Journal of the Marine Biological Association of the UK 83: 165–172.CrossRefGoogle Scholar
  62. Tews, J., U. Brose, V. Grimm, K. Tielbörger, M. C. Wichmann, et al., 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92.CrossRefGoogle Scholar
  63. UNEP-MAP RAC/SPA, 2010. The Mediterranean Sea Biodiversity: state of the ecosystems, pressures, impacts and future priorities. In Bazairi, H., S. Ben Haj, F. Boero, D. Cebrian, S. De Juan, A. Limam, J. Lleonart, G. Torchia, & C. Rais (eds), RAC/SPA, Tunis: 100 pp.Google Scholar
  64. Urra, J., S. Gofas, et al., 2016. Biodiversity and biogeographical patterns of molluscan assemblages in vegetated and unvegetated habitats in the northern Alboran Sea (W Mediterranean Sea). Marine Biodiversity 47: 187–201.CrossRefGoogle Scholar
  65. Vousdoukas, M. I., A. F. Velegrakis, M. Paul, C. Dimitriadis, E. Makrykosta & D. Koutsoubas, 2012. Field observations and modeling of wave attenuation over colonized beach rocks. Continental Shelf Research 48: 100–109.CrossRefGoogle Scholar
  66. Warwick, R. M. & K. R. Clarke, 2001. Practical measures of marine biodiversity based on relatedness of species. Oceanography and Marine Biology: Annual Review 39: 207–231.Google Scholar
  67. Wilbur K.M., C. M. Yonge (eds), 1964. Physiology of Mollusca, Vol. I. Academic Press, New York and London, 473 pp.Google Scholar
  68. Wilbur K.M., C. M. Yonge (eds), 1966. Physiology of Mollusca, Vol. II. Academic Press, New York and London, 645 pp.Google Scholar
  69. Wilis, S. C., K. O. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.CrossRefGoogle Scholar
  70. WORMS, 2017. World Register of Marine Species. http://www.marinespecies.org at VLIZ. Accessed 26 Feb 2017.

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Foundation for Research and Technology - Hellas (FORTH)Institute of Applied and Computational MathematicsHeraklionGreece
  2. 2.Institute of Marine Biology, Biotechnology & AquacultureHellenic Centre for Marine ResearchCreteGreece
  3. 3.Department of Marine Sciences, Faculty of EnvironmentUniversity of the AegeanLesbosGreece
  4. 4.National Marine Park of ZakynthosZakynthosGreece

Personalised recommendations