Advertisement

Hydrobiologia

, Volume 846, Issue 1, pp 27–38 | Cite as

Proteomic analysis in the model organism Daphnia has the potential to unravel molecular pathways involved in phenotypic changes in response to changing environmental conditions

  • Kathrin A. Otte
  • Christoph Effertz
  • Thomas Fröhlich
  • Georg J. Arnold
  • Christian LaforschEmail author
  • Eric von Elert
CLADOCERA

Abstract

The crustacean genus Daphnia holds a key position in aquatic ecosystems rendering it an important model organism in environmental research. Its enormous sensitivity to environmental changes is often accompanied by complex plastic responses resulting in different phenotypes from the same genetic background. This plasticity enables Daphnia to survive in heterogeneous environments. The molecular underpinning of these responses are of general interest as they may not only reveal mechanisms of plastic adaptation but also help to predict the impact of global environmental changes. Proteomics is especially suitable to analyse such molecular mechanisms, as proteins are the functional key players of most biochemical processes. In this review, we highlight crucial methodological steps for performing high-quality Daphnia proteomics. Furthermore, we report proteome studies which are able to link genotype and phenotype for a variety of plastic traits, emphasizing the great potential of Daphnia as a model organism for studying the effects of fluctuating and changing environments.

Keywords

Daphnia Proteomics Molecular mechanisms Phenotypic plasticity 

Notes

Acknowledgements

Funding was provided by European Science Foundation (Grant No. STRESSFLEA).

References

  1. Aebersold, R. & M. Mann, 2003. Mass spectrometry-based proteomics. Nature 422: 198–207.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal, M. K., A. Zitt, D. Bagchi, J. Weckesser, S. N. Bagchi & E. von Elert, 2005. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806. Environmental Toxicology 20: 314–322.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, N. L., J. P. Hofmann, A. Gemmell & J. Taylor, 1984. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clinical Chemistry 30: 2031–2036.PubMedPubMedCentralGoogle Scholar
  4. Bantscheff, M., S. Lemeer, M. M. Savitski & B. Kuster, 2012. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Analytical and bioanalytical chemistry 404: 939–965.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bantscheff, M., M. Schirle, G. Sweetman, J. Rick & B. Kuster, 2007. Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry 389: 1017–1031.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Borgatta, M., C. Hernandez, L. A. Decosterd, N. Chevre & P. Waridel, 2015. Shotgun ecotoxicoproteomics of Daphnia pulex: biochemical effects of the anticancer drug tamoxifen. Journal of Proteome Research 14: 279–291.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brzezinski, T. & E. von Elert, 2015. Predator evasion in zooplankton is suppressed by polyunsaturated fatty acid limitation. Oecologia Springer 179: 687–697.CrossRefGoogle Scholar
  8. Cañas, B., C. Piñeiro, E. Calvo, D. López-Ferrer & J. M. Gallardo, 2007. Trends in sample preparation for classical and second generation proteomics. Journal of Chromatography A 1153: 235–258.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Colbourne, J. K., M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold, M. K. Basu, D. J. Bauer, C. E. Cáceres, L. Carmel, C. Casola, J.-H. Choi, J. C. Detter, Q. Dong, S. Dusheyko, B. D. Eads, T. Fröhlich, K. A. Geiler-Samerotte, D. Gerlach, P. Hatcher, S. Jogdeo, J. Krijgsveld, E. V. Kriventseva, D. Kültz, C. Laforsch, E. Lindquist, J. Lopez, J. R. Manak, J. Muller, J. Pangilinan, R. P. Patwardhan, S. Pitluck, E. J. Pritham, A. Rechtsteiner, M. Rho, I. B. Rogozin, O. Sakarya, A. Salamov, S. Schaack, H. Shapiro, Y. Shiga, C. Skalitzky, Z. Smith, A. Souvorov, W. Sung, Z. Tang, D. Tsuchiya, H. Tu, H. Vos, M. Wang, Y. I. Wolf, H. Yamagata, T. Yamada, Y. Ye, J. R. Shaw, J. Andrews, T. J. Crease, H. Tang, S. M. Lucas, H. M. Robertson, P. Bork, E. V. Koonin, E. M. Zdobnov, I. V. Grigoriev, M. Lynch & J. L. Boore, 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cox, J., M. M. Y. Hein, C. C. A. Luber, I. Paron, N. Nagaraj & M. Mann, 2014. MaxLFQ allows accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Molecular & Cellular Proteomics 13: 2513–2526.CrossRefGoogle Scholar
  11. De Sousa Abreu, R., L. O. Penalva, E. M. Marcotte & C. Vogel, 2009. Global signatures of protein and mRNA expression levels. Molecular BioSystems 5: 1512–1526.PubMedGoogle Scholar
  12. DeMott, W. R. & D. Shree, 1995. Inhibition of in vitro protein phosphatase activity in three zooplankton species by microcystin-LR, a toxin from cyanobacteria. Archiv für Hydrobiologie Schweizerbart 134: 417–424.Google Scholar
  13. Denslow, N. D., J. K. Colbourne, D. Dix, J. H. Freedman, C. C. Helbing, S. Kennedy & P. L. Williams, 2007. Selection of Surrogate Animal Species for Comparative Toxicogenomics. Genomic Approaches for Cross-Species Extrapolation in Toxicology. CRC Press, Portland.Google Scholar
  14. Dircksen, H., S. Neupert, R. Predel, P. Verleyen, J. Huybrechts, J. Strauss, F. Hauser, E. Stafflinger, M. Schneider, K. Pauwels, L. Schoofs & C. J. P. Grimmelikhuijzen, 2011. Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones. Journal of Proteome Research 10: 4478–4504.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ebert, D., 2005. Ecology Epidemiology and Evolution of Parasitism in Daphnia. Bethesda, National Library of Medicine (US), National Center for Biotechnology Information.Google Scholar
  16. Effertz, C., S. Müller & E. Von Elert, 2015. Differential peptide labeling (iTRAQ) in LC-MS/MS based proteomics in Daphnia reveal mechanisms of an antipredator response. Journal of Proteome Research 14: 888–896.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Effertz, C. & E. von Elert, 2014. Light intensity controls anti-predator defences in Daphnia: the suppression of life-history changes. Proceedings of the Royal Society: Biological Sciences 281: 20133250.CrossRefGoogle Scholar
  18. Effertz, C. & E. von Elert, 2017. Coupling of anti-predator defences in Daphnia: the importance of light. Hydrobiologia 798: 5–13.CrossRefGoogle Scholar
  19. Eriksson, J. E., D. Toivola, J. A. O. Meriluoto, H. Karaki, Y. G. Han & D. Hartshorne, 1990. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochemical and Biophysical Research Communications 173: 1347–1353.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Feder, M. E. & J.-C. Walser, 2005. The biological limitations of transcriptomics in elucidating stress and stress responses. Journal of Evolutionary Biology 18: 901–910.CrossRefGoogle Scholar
  21. Fröhlich, T., G. J. Arnold, R. Fritsch, T. Mayr & C. Laforsch, 2009. LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia. BMC Genomics 10: 171.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gouw, J. W., J. Krijgsveld & A. J. R. Heck, 2010. Quantitative proteomics by metabolic labeling of model organisms. Molecular & Cellular Proteomics 9: 11–24.CrossRefGoogle Scholar
  23. Grün, D., M. Kirchner, N. Thierfelder, M. Stoeckius, M. Selbach & N. Rajewsky, 2014. Conservation of mRNA and Protein Expression during Development of C. elegans. Cell Reports 6: 565–577.CrossRefGoogle Scholar
  24. Gustafsson, S., K. Rengefors & L.-A. Hansson, 2005. Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86: 2561–2567.CrossRefGoogle Scholar
  25. Gygi, S. P., G. L. Corthals, Y. Zhang, Y. Rochon & R. Aebersold, 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America 97: 9390–9395.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Harris, K. D. M., N. J. Bartlett & V. K. Lloyd, 2012. Daphnia as an emerging epigenetic model organism. Genetics Research International 2012: 1–8.CrossRefGoogle Scholar
  27. Honkanen, R. E., J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra, M. Dukelow & A. L. Boynton, 1990. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Journal of Biological Chemistry ASBMB 265: 19401–19404.Google Scholar
  28. Kemp, C. J. & D. Kültz, 2012. Controlling proteome degradation in Daphnia pulex. Journal of Experimental Zoology 317: 645–651.PubMedGoogle Scholar
  29. Kim, H., P. Koedrith & Y. Seo, 2015. Ecotoxicogenomic Approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia Model organism. International Journal of Molecular Sciences 16: 12261–12287.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klose, J., 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26: 231–243.PubMedGoogle Scholar
  31. Krijgsveld, J., R. Ketting & T. Mahmoudi, 2003. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nature Biotechnology 21: 927–931.CrossRefGoogle Scholar
  32. Kwon, O. K., J. Sim, S. J. Kim, H. R. Oh, D. H. Nam & S. Lee, 2016. Global proteomic analysis of protein acetylation affecting metabolic regulation in Daphnia pulex. Biochimie 121: 219–227.CrossRefGoogle Scholar
  33. Kwon, O. K., J. Sim, K. N. Yun, J. Y. Kim & S. Lee, 2014. Global phosphoproteomic analysis of Daphnia pulex reveals evolutionary conservation of Ser/Thr/Tyr phosphorylation. Journal of Proteome Research 13: 1327–1335.CrossRefGoogle Scholar
  34. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. In Diel Vertical Migration of Zooplankton: 79–88.Google Scholar
  35. Lampert, W., 2006. Daphnia: model herbivore, predator and prey. Polish Journal of Ecology 54: 607–620.Google Scholar
  36. Lampert, W. & J. Grey, 2003. Exploitation of a deep-water algal maximum by Daphnia: a stable-isotope tracer study. Hydrobiologia 500: 95–101.CrossRefGoogle Scholar
  37. Le, T. H., E. S. Lim, N. H. Hong, S. K. Lee, Y. S. Shim, J. R. Hwang, Y. H. Kim & J. Min, 2013. Proteomic analysis in Daphnia magna exposed to As(III), As(V) and Cd heavy metals and their binary mixtures for screening potential biomarkers. Chemosphere 93: 2341–2348.CrossRefGoogle Scholar
  38. Lemos, M. F. L., A. M. V. M. Soares, A. C. Correia & A. C. Esteves, 2010. Proteins in ecotoxicology – how, why and why not? Proteomics 10: 873–887.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li, H., J. Han, J. Pan, T. Liu, C. E. Parker & C. H. Borchers, 2017. Current trends in quantitative proteomics – an update. Journal of Mass Spectrometry 52: 319–341.CrossRefGoogle Scholar
  40. Lürling, M., 2003. Effects of microcystin-free and microcystin-containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environmental Toxicology 18: 202–210.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lyu, K., Q. Meng, X. Zhu, D. Dai, L. Zhang, Y. Huang & Z. Yang, 2016. Changes in iTRAQ-based proteomic profiling of the cladoceran Daphnia magna exposed to microcystin-producing and microcystin-free Microcystis aeruginosa. Environmental Science & Technology 50: 4798–4807.CrossRefGoogle Scholar
  42. Miner, B. E., L. De Meester, M. E. Pfrender, W. Lampert & N. G. Hairston, 2012. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society: Biological Sciences 279: 1873–1882.CrossRefGoogle Scholar
  43. Morris, M., & S. M. Rogers, 2014. Integrating phenotypic plasticity within an ecological genomics framework: recent insights from the genomics, evolution, ecology, and fitness of plasticity. In Ecological Genomics. Springer, New York: 73–105.Google Scholar
  44. Nagaraj, N., N. Alexander Kulak, J. Cox, N. Neuhauser, K. Mayr, O. Hoerning, O. Vorm & M. Mann, 2012. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top orbitrap. Molecular & Cellular Proteomics 11: M111.013722.CrossRefGoogle Scholar
  45. Nagaraj, N., J. R. Wisniewski, T. Geiger, J. Cox, M. Kircher, J. Kelso, S. Pääbo & M. Mann, 2011. Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology 7: 1–8.CrossRefGoogle Scholar
  46. O’Farrell, P. H., 1975. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry 250: 4007–4021.PubMedPubMedCentralGoogle Scholar
  47. Ong, S.-E., B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey & M. Mann, 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics 1: 376–386.CrossRefGoogle Scholar
  48. Otte, K. A., T. Fröhlich, G. J. Arnold & C. Laforsch, 2014. Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 15: 306.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Otte, K. A., I. Schrank, T. Fröhlich, G. J. Arnold & C. Laforsch, 2015. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats. Molecular Ecology 24: 3901–3917.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Patterson, S. D. & R. H. Aebersold, 2003. Proteomics: the first decade and beyond. Nature Genetics 33(Suppl): 311–323.CrossRefGoogle Scholar
  51. Petrusek, A., R. Tollrian, K. Schwenk, A. Haas & C. Laforsch, 2009. A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proceedings of the National Academy of Sciences of the United States of America 106: 2248–2252.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Puddick, J., M. R. Prinsep, S. A. Wood, S. A. F. Kaufononga, S. C. Cary & D. P. Hamilton, 2014. High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Marine Drugs 12: 5372–5395.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rabus, M. & C. Laforsch, 2011. Growing large and bulky in the presence of the enemy: Daphnia magna gradually switches the mode of inducible morphological defences. Functional Ecology 25: 1137–1143.CrossRefGoogle Scholar
  54. Rabus, M., T. Söllradl, H. Clausen-Schaumann & C. Laforsch, 2013. Uncovering ultrastructural defences in Daphnia magna – an interdisciplinary approach to assess the predator-induced fortification of the carapace. PLoS ONE 8: e67856.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ross, P. L., Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey, S. Daniels, S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones, F. He, A. Jacobson & D. J. Pappin, 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics: MCP, 3(12): 1154–1169.  https://doi.org/10.1074/mcp.M400129-MCP200.CrossRefGoogle Scholar
  56. Sadler, T., C. Kuster & E. von Elert, 2014. Seasonal dynamics of chemotypes in a freshwater phytoplankton community – a metabolomic approach. Harmful Algae 39: 102–111.CrossRefGoogle Scholar
  57. Scheele, G. A., 1975. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. The Journal of Biological Chemistry 250: 5375–5385.PubMedGoogle Scholar
  58. Schwanhäusser, B., D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen & M. Selbach, 2011. Global quantification of mammalian gene expression control. Nature 473: 337–342.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schwarzenberger, A., T. Sadler, S. Motameny, K. Ben-Khalifa, P. Frommolt, J. Altmüller, K. Konrad & E. von Elert, 2014. Deciphering the genetic basis of microcystin tolerance. BMC Genomics 15: 776.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schwarzenberger, A., A. Zitt, P. Kroth, S. Mueller & E. Von Elert, 2010. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors. BMC Physiology 10: 6.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schwerin, S., B. Zeis, T. Lamkemeyer, R. J. Paul, M. Koch, J. Madlung, C. Fladerer & R. Pirow, 2009. Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 °C and 20 °C) mainly affects protein metabolism. BMC Physiology 9: 8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ślusarczyk, M., 1999. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia 119: 159–165.CrossRefGoogle Scholar
  63. Sommer, U., F. Sommer, B. Santer, E. Zöllner, K. Jürgens, C. Jamieson, M. Boersma & K. Gocke, 2003. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135: 639–647.CrossRefGoogle Scholar
  64. Stollewerk, A., 2010. The water flea Daphnia-a ‘new’ model system for ecology and evolution? Journal of Biology 9: 2–5.CrossRefGoogle Scholar
  65. Thompson, A., J. Schäfer., K. Kuhn., S. Kienle., J. Schwarz, G. Schmidt, T. Neumann & C. Hamon, 2003. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry 75(8): 1895–1904.CrossRefGoogle Scholar
  66. Toumi, H., M. Boumaiza, F. Immel, B. Sohm, V. Felten & J. F. Férard, 2014. Effect of deltamethrin (pyrethroid insecticide) on two clones of Daphnia magna (Crustacea, Cladocera): a proteomic investigation. Aquatic Toxicology 148: 40–47.CrossRefGoogle Scholar
  67. Toyota, K., S. Miyagawa, Y. Ogino & T. Iguchi, 2016. Microinjection-based RNA interference method in the water flea, Daphnia pulex and Daphnia magna. InTech, Rijeka.CrossRefGoogle Scholar
  68. Trotter, B., K. A. Otte., K. Schoppmann., R. Hemmersbach., T. Fröhlich., G. J. Arnold & C. Laforsch, 2015. The influence of simulated microgravity on the proteome of Daphnia magna. NPJ Microgravity.  https://doi.org/10.1038/npjmgrav.2015.16.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Unlü, M., M. E. Morgan & J. S. Minden, 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.CrossRefGoogle Scholar
  70. Via, S., R. Gomulkiewicz, G. De Jong, S. M. Scheiner, C. D. Schlichting & P. H. Van Tienderen, 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution 10: 212–217.CrossRefGoogle Scholar
  71. Vincens, P., P. Tarroux & T. Rabilloud, 1987. HERMes: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: Data analysis. Electrophoresis 8: 187–199.CrossRefGoogle Scholar
  72. Von Elert, E., 2012. Information conveyed by chemical cues. Chemical Ecology in Aquatic Systems.  https://doi.org/10.1093/acprof:osobl/9780199583096.003.0003.CrossRefGoogle Scholar
  73. Von Elert, E., M. K. Agrawal, C. Gebauer, H. Jaensch, U. Bauer & A. Zitt, 2004. Protease activity in gut of Daphnia magna: evidence for trypsin and chymotrypsin enzymes. Comparative Biochemistry and Physiology B 137: 287–296.CrossRefGoogle Scholar
  74. Wasinger, V., S. Cordwell, A. Cerpa-Poljak, J. Yan, A. Gooley, M. Wilkins, M. Duncan, R. Harris, K. Williams & I. Humphrey-Smith, 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 7: 453–457.Google Scholar
  75. Wiese, S., K. A. Reidegeld., H. E. Meyer & B. Warscheid, 2007. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3): 340–350.CrossRefGoogle Scholar
  76. Wilkins, M. R., C. Pasquali, R. D. Appel, K. Ou, O. Golaz, J. C. Sanchez, J. X. Yan, A. A. Gooley, G. Hughes, I. Humphery-Smith, K. L. Williams & D. F. Hochstrasser, 1996. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14: 61–65.PubMedPubMedCentralGoogle Scholar
  77. Zeis, B., T. Lamkemeyer, R. J. Paul, F. Nunes, S. Schwerin, M. Koch, W. Schütz, J. Madlung, C. Fladerer & R. Pirow, 2009. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism. BMC Physiology 9: 7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kathrin A. Otte
    • 1
    • 2
    • 3
    • 5
  • Christoph Effertz
    • 4
  • Thomas Fröhlich
    • 3
  • Georg J. Arnold
    • 3
  • Christian Laforsch
    • 2
    Email author
  • Eric von Elert
    • 4
  1. 1.Department Biology IILudwig Maximilians University MunichPlanegg-MartinsriedGermany
  2. 2.Animal Ecology I and BayCEERUniversity of BayreuthBayreuthGermany
  3. 3.Laboratory for Functional Genome Analysis (LAFUGA), Gene CenterLudwig-Maximilians-University MunichMunichGermany
  4. 4.Zoological Institute, Aquatic Chemical EcologyUniversity of CologneCologneGermany
  5. 5.Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria

Personalised recommendations