Advertisement

Hydrobiologia

, Volume 823, Issue 1, pp 205–216 | Cite as

Autoaggregation and adhesion abilities in bacteria associated with colonies of Microcystis

  • Peiliang Zhang
  • Maozhen Chen
  • Yapeng Zhang
  • Yemei Li
  • Shan Lu
  • Pengfu Li
Primary Research Paper

Abstract

Bacteria associated with Microcystis may play an important role in formation of Microcystis colonies and in development of cyanobacterial blooms. Adhesion to Microcystis cells is a requirement for colonization and long-term association of bacteria with Microcystis colonies. This study aimed to explore the relationship between autoaggregation ability and adhesion ability of Microcystis-associated bacteria, and to evaluate the effects of different environmental factors on their autoaggregation abilities. Twelve bacterial strains were isolated from colonies of three Microcystis morphospecies. All the bacterial isolates exhibited autoaggregation abilities. A positive correlation was found between autoaggregation ability and adhesion ability. Two selected bacterial isolates, HJX5 and HJX9, exhibited strong autoaggregation abilities at pH from 3 to 11. The laboratory experiment revealed the inhibitory effects of metal cations on the autoaggregation abilities of HJX5 and HJX9, but HJX5 and HJX9 could exhibit their autoaggregation abilities in the lake water. Extraction of exopolysaccharides (EPS) decreased significantly their autoaggregation abilities, indicating that EPS can play an important role in autoaggregation. The autoaggregation ability of Microcystis-associated bacteria may be an important trait contributing to their attachment into Microcystis colonies.

Keywords

Cyanobacterial bloom Exopolysaccharide Attachment Colonization 

Notes

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (No. 31270447). We thank two anonymous reviewers for their valuable comments.

Supplementary material

10750_2018_3706_MOESM1_ESM.pdf (110 kb)
Supplementary material 1 (PDF 109 kb)

References

  1. Abdel-Nour, M., C. Duncan, A. Prashar, C. Rao, C. Ginevra, S. Jarraud, D. E. Low, A. W. Ensminger, M. R. Terebiznik & C. Guyard, 2014. The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Applied and Environmental Microbiology 80: 1441–1454.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arenas, J., S. Cano, R. Nijland, V. van Dongen, L. Rutten, A. van der Ende & J. Tommassen, 2015. The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation. Environmental Microbiology 17: 1321–1337.CrossRefPubMedGoogle Scholar
  3. Bernardet, J. F., M. Vancanneyt, O. Matte-Tailliez, L. Grisez, P. Tailliez, C. Bizet, M. Nowakowski, B. Kerouault & J. Swings, 2005. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Systematic and Applied Microbiology 28: 640–660.CrossRefPubMedGoogle Scholar
  4. Brunberg, A. K., 1999. Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology 29: 13–22.CrossRefGoogle Scholar
  5. Cai, H. Y., H. L. Jiang, L. R. Krumholz & Z. Yang, 2014. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9: e102879.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Canzi, E., S. Guglielmetti, D. Mora, I. Tamagnini & C. Parini, 2005. Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek 88: 207–219.CrossRefPubMedGoogle Scholar
  7. Caron, D. A., P. G. Davis, L. P. Madin & J. M. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797.CrossRefPubMedGoogle Scholar
  8. Crump, B. C. & E. W. Koch, 2008. Attached bacterial populations shared by four species of aquatic angiosperms. Applied and Environmental Microbiology 74: 5948–5957.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Del Re, B., A. Busetto, G. Vignola, B. Sgorbati & D. L. Palenzona, 1998. Autoaggregation and adhesion ability in a Bifidobacterium suis strain. Letters in Applied Microbiology 27: 307–310.CrossRefPubMedGoogle Scholar
  10. Ekmekçi, H., B. Aslim & Ö. Darilmaz, 2009. Some factors affecting the autoaggregation ability of vaginal lactobacilli isolated from Turkish women. Archives of Biological Sciences 61: 407–412.CrossRefGoogle Scholar
  11. Felek, S., M. B. Lawrenz & E. S. Krukonis, 2008. The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology-Sgm 154: 1802–1812.CrossRefGoogle Scholar
  12. Fuks, D., J. Radić, T. Radić, M. Najdek, M. Blažina, D. Degobbis & N. Smodlaka, 2005. Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Science of the Total Environment 353: 178–188.CrossRefPubMedGoogle Scholar
  13. Fulton, R. S. & H. W. Paerl, 1987. Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnology and Oceanography 32: 634–644.CrossRefGoogle Scholar
  14. Gan, N. Q., Y. Xiao, L. Zhu, Z. X. Wu, J. Liu, C. L. Hu & L. R. Song, 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14: 730–742.CrossRefPubMedGoogle Scholar
  15. Gao, Z. P., P. Nie, J. F. Lu, L. Y. Liu, T. Y. Xiao, W. Liu, J. S. Liu & H. X. Xie, 2015. Type III secretion system translocon component EseB forms filaments on and mediates autoaggregation of and biofilm formation by Edwardsiella tarda. Applied and Environmental Microbiology 81: 6078–6087.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hevia, A., N. Martinez, V. Ladero, M. A. Álvarez, A. Margolles & B. Sanchez, 2013. An extracellular serine/threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin. Applied and Environmental Microbiology 79: 6059–6066.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Joe, M. M., V. S. Saravanan & T. Sa, 2013. Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity. Archives of Microbiology 195: 219–225.CrossRefPubMedGoogle Scholar
  18. Juárez Tomás, M. S., B. Wiese & M. E. Nader-Macías, 2005. Effects of culture conditions on the growth and auto-aggregation ability of vaginal Lactobacillus johnsonii CRL 1294. Journal of Applied Microbiology 99: 1383–1391.CrossRefPubMedGoogle Scholar
  19. Klemm, P., L. Hjerrild, M. Gjermansen & M. A. Schembri, 2004. Structure-function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Molecular Microbiology 51: 283–296.CrossRefPubMedGoogle Scholar
  20. Kos, B., J. Susković, S. Vuković, M. Simpraga, J. Frece & S. Matošić, 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. Journal of Applied Microbiology 94: 981–987.CrossRefPubMedGoogle Scholar
  21. Lehman, P. W., G. Boyer, C. Hall, S. Waller & K. Gehrts, 2005. Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 541: 87–99.CrossRefGoogle Scholar
  22. Li, P. F., Y. F. Cai, L. M. Shi, L. F. Geng, P. Xing, Y. Yu, F. X. Kong & Y. J. Wang, 2009. Microbial degradation and preliminary chemical characterization of Microcystis exopolysaccharides from a cyanobacterial water bloom of Lake Taihu. International Review of Hydrobiology 94: 645–655.CrossRefGoogle Scholar
  23. Liu, L. Z., Q. Huang, B. Q. Qin, G. W. Zhu, P. Wu & Y. M. Wu, 2016. Characterizing cell surface of blooming Microcystis in Lake Taihu, China. Water Science and Technology 73: 2731–2738.CrossRefPubMedGoogle Scholar
  24. Lukic, J., I. Strahinic, M. Milenkovic, M. Nikolic, M. Tolinacki, M. Kojic & J. Begovic, 2014. Aggregation factor as an inhibitor of bacterial binding to gut mucosa. Microbial Ecology 68: 633–644.CrossRefPubMedGoogle Scholar
  25. Maruyama, T., K. Kato, A. Yokoyama, T. Tanaka, A. Hiraishi & H. D. Park, 2003. Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microbial Ecology 46: 279–288.CrossRefPubMedGoogle Scholar
  26. Mello, M. M., M. C. S. Soares, F. Roland & M. Lürling, 2012. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii. Journal of Plankton Research 34: 987–994.CrossRefGoogle Scholar
  27. Otsuka, S., S. Suda, R. H. Li, S. Matsumoto & M. M. Watanabe, 2000. Morphological variability of colonies of Microcystis morphospecies in culture. Journal of General and Applied Microbiology 46: 39–50.CrossRefPubMedGoogle Scholar
  28. Pérez, P. F., Y. Minnaard, E. A. Disalvo & G. L. De Antoni, 1998. Surface properties of bifidobacterial strains of human origin. Applied and Environmental Microbiology 64: 21–26.PubMedPubMedCentralGoogle Scholar
  29. Parveen, B., V. Ravet, C. Djediat, I. Mary, C. Quiblier, D. Debroas & J. F. Humbert, 2013. Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environmental Microbiology Reports 5: 716–724.PubMedGoogle Scholar
  30. Pavithra, D. & M. Doble, 2008. Biofilm formation, bacterial adhesion and host response on polymeric implants – issues and prevention. Biomedical Materials 3: 034003.CrossRefPubMedGoogle Scholar
  31. Rahman, M. M., W. S. Kim, H. Kumura & K. I. Shimazaki, 2008. Autoaggregation and surface hydrophobicity of bifidobacteria. World Journal of Microbiology and Biotechnology 24: 1593–1598.CrossRefGoogle Scholar
  32. Ramani, A., K. Rein, K. G. Shetty & K. Jayachandran, 2012. Microbial degradation of microcystin in Florida’s freshwaters. Biodegradation 23: 35–45.CrossRefPubMedGoogle Scholar
  33. Reasoner, D. J. & E. E. Geldreich, 1985. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology 49: 1–7.PubMedPubMedCentralGoogle Scholar
  34. Ren, N. Q., T. H. Xie & D. F. Xing, 2009. Composition of extracellular polymeric substances influences the autoaggregation capability of hydrogen-producing bacterium Ethanoligenens harbinense. Bioresource Technology 100: 5109–5113.CrossRefPubMedGoogle Scholar
  35. Rippka, R., 1988. Isolation and purification of cyanobacteria. Methods in Enzymology 167: 3–27.CrossRefPubMedGoogle Scholar
  36. Shen, H. & L. R. Song, 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592: 475–486.CrossRefGoogle Scholar
  37. Shen, H., Y. Niu, P. Xie, M. Tao & X. Yang, 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology 56: 1065–1080.CrossRefGoogle Scholar
  38. Sheng, G. P., H. Q. Yu & Z. Yu, 2005. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Applied Microbiology and Biotechnology 67: 125–130.CrossRefPubMedGoogle Scholar
  39. Shi, L. M., Y. F. Cai, P. F. Li, H. W. Yang, Z. L. Liu, L. D. Kong, Y. Yu & F. X. Kong, 2009. Molecular identification of the colony-associated cultivable bacteria of the cyanobacterium Microcystis aeruginosa and their effects on algal growth. Journal of Freshwater Ecology 24: 211–218.CrossRefGoogle Scholar
  40. Shi, L. M., Y. F. Cai, F. X. Kong & Y. Yu, 2012. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environmental Microbiology Reports 4: 669–678.PubMedGoogle Scholar
  41. Sorroche, F. G., L. V. Rinaudi, Á. Zorreguieta & W. Giordano, 2010. EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Current Microbiology 61: 465–470.CrossRefPubMedGoogle Scholar
  42. Sorroche, F. G., M. B. Spesia, Á. Zorreguieta & W. Giordano, 2012. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Applied and Environmental Microbiology 78: 4092–4101.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tang, X. M., G. Gao, B. Q. Qin, L. P. Zhu, J. Y. Chao, J. J. Wang & G. J. Yang, 2009. Characterization of bacterial communities associated with organic aggregates in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Microbial Ecology 58: 307–322.CrossRefPubMedGoogle Scholar
  44. Tillett, D. & B. A. Neilan, 2000. Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. Journal of Phycology 36: 251–258.CrossRefGoogle Scholar
  45. Voegel, T. M., H. Doddapaneni, D. W. Cheng, H. Lin, D. C. Stenger, B. C. Kirkpatrick & M. C. Roper, 2013. Identification of a response regulator involved in surface attachment, cell–cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa. Molecular Plant Pathology 14: 256–264.CrossRefPubMedGoogle Scholar
  46. Wang, W. J., H. Shen, P. L. Shi, J. Chen, L. Y. Ni & P. Xie, 2015. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. Journal of Applied Phycology 28: 1111–1123.CrossRefGoogle Scholar
  47. Wang, X. Y., M. J. Xie, W. Wu, L. M. Shi, L. Luo & P. F. Li, 2013. Differential sensitivity of colonial and unicellular Microcystis strains to an algicidal bacterium Pseudomonas aeruginosa. Journal of Plankton Research 35: 1172–1176.CrossRefGoogle Scholar
  48. Weisburg, W. G., S. M. Barns, D. A. Pelletier & D. J. Lane, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173: 697–703.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wu, Z. X. & L. R. Song, 2008. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia 47: 98–104.CrossRefGoogle Scholar
  50. Xie, M. L., M. L. Ren, C. Yang, H. S. Yi, Z. Li, T. Li & J. D. Zhao, 2016. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community. Frontiers in Microbiology 7: 56.PubMedPubMedCentralGoogle Scholar
  51. Yang, F., Y. L. Zhou, L. H. Yin, G. C. Zhu, G. Y. Liang & Y. P. Pu, 2014. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLoS ONE 9: e86216.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yang, L., Y. Q. Liu, X. Y. Cao, Z. J. Zhou, S. Y. Wang, J. Xiao, C. L. Song & Y. Y. Zhou, 2017. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria. Microbiological Research 205: 59–65.CrossRefPubMedGoogle Scholar
  53. Yang, Z., F. X. Kong, X. L. Shi, M. Zhang, P. Xing & H. S. Cao, 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. Journal of Phycology 44: 716–720.CrossRefPubMedGoogle Scholar
  54. Yang, Z., F. X. Kong, M. Zhang, Z. Yang, Y. Yu & S. Q. Qian, 2009. Effect of filtered cultures of flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. International Review of Hydrobiology 94: 143–152.CrossRefGoogle Scholar
  55. Yu, G. L., L. R. Song & R. H. Li, 2007. Taxonomic notes on water bloom forming Microcystis species (Cyanophyta) from China – An example from samples of the Dianchi Lake. Acta Phytotaxonomica Sinica 45: 727–741.CrossRefGoogle Scholar
  56. Zeng, P., B. Y. P. Moy, Y. H. Song & J. H. Tay, 2008. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules. Applied Microbiology and Biotechnology 80: 899–905.CrossRefPubMedGoogle Scholar
  57. Zhang, B. H., N. Salam, J. Cheng, H. Q. Li, J. Y. Yang, D. M. Zha, Q. G. Guo & W. J. Li, 2017. Microbacterium lacusdiani sp. nov., a phosphate-solubilizing novel actinobacterium isolated from mucilaginous sheath of Microcystis. Journal of Antibiotics 70: 147–151.CrossRefPubMedGoogle Scholar
  58. Zhang, M., F. X. Kong, X. Tan, Z. Yang, H. S. Cao & P. Xing, 2007. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology & Biotechnology 23: 663–670.CrossRefGoogle Scholar
  59. Zhu, L., A. Zancarini, I. Louati, S. De Cesare, C. Duval, K. Tambosco, C. Bernard, D. Debroas, L. R. Song, J. Leloup & J. F. Humbert, 2016. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Frontiers in Microbiology 7: 1662.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peiliang Zhang
    • 1
  • Maozhen Chen
    • 1
  • Yapeng Zhang
    • 1
  • Yemei Li
    • 1
  • Shan Lu
    • 1
  • Pengfu Li
    • 1
  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina

Personalised recommendations