, Volume 823, Issue 1, pp 191–203 | Cite as

Reducing the deleterious effects of logging on Ephemeroptera communities through reduced impact management

  • Mylena Neves CardosoEmail author
  • Lenize Batista Calvão
  • Luciano Fogaça de Assis Montag
  • Bruno Spacek Godoy
  • Leandro Juen
Primary Research Paper


Reduced impact logging has emerged as one alternative to reduce the effects of timber harvesting. However, the effects of this method on aquatic ecosystems still need to be tested. We studied the effects of logging (reduced-impact logging—RIL and conventional logging methods—CL) on the chemical water quality and physical habitat conditions of streams in eastern Amazonia, as well as on Ephemeroptera diversity. Were analyzed control streams (without logging—CONTROL), streams with RIL and streams with CL, located in the Capim River Basin. Specimens were collected using a dipnet, following a standard protocol and abiotic data were measured with a multiparameter probe. Conventional logging in proximity to streams increased the conductivity and pH of the water, reduced dissolved oxygen and canopy cover of the stream’s channel, altering the composition of Ephemeroptera when compared with CONTROL and RIL areas. We verified that specialist Ephemeroptera species within control environments were replaced by species more tolerant to changes in the natural habitat conditions. In contrast, there was species similarity between RIL and CONTROL streams.


Deforestation Stream ecology Conservation Amazon forest Benthic macroinvertebrate 



We would like to thank 33 Forest and CIKEL LTDA and Instituto de Florestas Tropicais (IFT) for their logistical support. The Conselho Nacional de Desenvolvimento Científico e Tecnológico for financing the project entitled “Tempo de resiliência das comunidades aquáticas após o corte seletivo de madeira na Amazônia Oriental” by Universal notice 14/2011, process 481015/2011-6 and for the productivity grant to LFAM (process: 305017/2016-0) and LJ (process: 307597/2016-4). LFAM was funded by the Cooordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) (process 88881.119097/2016-01). We would also like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the Master’s scholarship to MC and the Doctorate scholarship to LBC.

Supplementary material

10750_2018_3705_MOESM1_ESM.tif (6.7 mb)
Supplementary material 1 Fig. 1 Vectors obtained in Coordinates analysis of Neighbor Matrices (PCNM). Vector 1 related to community, vectors 1, 3 and 6 to abundance, and vector 3 to richness (TIFF 6889 kb)


  1. Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer Science & Business Media, New York.CrossRefGoogle Scholar
  2. Anderson, M. J., 2001. A new method for nonparametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  3. Baptista, D. F., D. F. Buss, L. F. M. Dorvillé & J. L. Nessimian, 2001. Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé river basin, Rio de Janeiro, Brazil. Revista Brasileira de Biologia 61: 249–258.CrossRefGoogle Scholar
  4. Barber-James, H., J. L. Gattolliat, M. Sartori & M. D. Hubbard, 2008. Global diversity of Mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 595: 339–350.CrossRefGoogle Scholar
  5. Bauernfeind, E. & O. Moog, 2000. Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422: 71–83.CrossRefGoogle Scholar
  6. Benstead, J. P., M. M. Douglas & C. M. Pringle, 2003. Relationships of stream invertebrate communities to deforestation in eastern Madagascar. Ecological Applications 13: 1473–1490.CrossRefGoogle Scholar
  7. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89(9): 2623–2632.CrossRefPubMedGoogle Scholar
  8. Bleich, M. E., A. F. Mortati, T. André & M. T. F. Piedade, 2016. Structural dynamics of pristine headwater streams from Southern Brazilian Amazon. River Research and Applications 32(3): 473–482.CrossRefGoogle Scholar
  9. Boltz, F., T. P. Holmes & D. R. Carter, 2003. Economic and environmental impacts of conventional and reduced-impact logging in Tropical South America: a comparative review. Forest Policy and Economics 5(1): 69–81.CrossRefGoogle Scholar
  10. Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRefGoogle Scholar
  11. Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  12. BRASIL, 2005. Resolução CONAMA 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente-CONAMA. Available at: Accessed on 8 Oct 2017.
  13. Brasil, L. S., J. D. Batista & H. S. R. Cabette, 2013. Effects of environmental factors on community structure of Leptophlebiidae (Insecta, Ephemeroptera) in Cerrado streams, Brazil. Iheringia. Série Zoologia 103: 260–265.CrossRefGoogle Scholar
  14. Callisto, M., M. Goulart, F. A. R. Barbosa & O. Rocha, 2005. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern Brazil). Brazilian Journal of Biology 65: 229–240.CrossRefGoogle Scholar
  15. Calvão, L. B., D. S. Nogueira, L. F. A. Montag, M. A. Lopes & L. Juen, 2016. Are Odonata communities impacted by conventional or reduced impact logging? Forest Ecology and Management 382: 143–150.CrossRefGoogle Scholar
  16. Cederberg, C., U. M. Persson, K. Neovius, S. Molander & R. Clift, 2011. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environmental Science & Technology 45: 1773–1779.CrossRefGoogle Scholar
  17. Crisci-Bispo, V. L., P. C. Bispo & C. G. Froehlich, 2007. Ephemeroptera, Plecoptera e Trichoptera assemblages in two Atlantic rainforest streams, Southeastern Brazil. Revista Brasileira de Zoologia 24: 312–318.CrossRefGoogle Scholar
  18. Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environmental 40: 71–90.CrossRefGoogle Scholar
  19. Dias, L. G., C. Molineri & P. S. Ferreira, 2007. Ephemerelloidea (Insecta: Ephemeroptera) do Brasil. Papéis Avulsos de Zoologia (São Paulo) 47(19): 213–244.Google Scholar
  20. Dias, M. S., W. E. Magnusson & J. Zuanon, 2010. Effects of reduced-impact logging on fish assemblages in a Central Amazonia. Conservation Biology 24: 278–286.CrossRefPubMedGoogle Scholar
  21. Dodds, W. K., 2002. Freshwater Ecology: Concepts and Environmental Applications. Aquatic Ecology Series. Academic Press, London.Google Scholar
  22. Dominguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard & C. Nieto, 2006. Ephemeroptera of South America. Pensoft Publishers, Sofia.Google Scholar
  23. Dray, S., P. Legendre & G. Blanchet, 2011. Pack for: forward Selection with permutation. R package version 0.0e8/r100.Google Scholar
  24. Dudgeon, D. & G. Bretschko, 1996. Allochthonous inputs and land-water interactions in seasonal streams: tropical Asia and temperate Europe. In Schiemer, F. & K. T. Boland (eds), Perspectives in Tropical Limnology. SPB Academic Publishing, The Hague: 161–179.Google Scholar
  25. Esteves, F. D. A., 2011. Fundamentos de Limnologia, 3rd ed. Interciência, Rio de Janeiro.Google Scholar
  26. Fearnside, P. M., 2006. Greenhouse gas emissions from hydroelectric dams: reply to Rosa et al. Climatic Change 75(1–2): 103–109.CrossRefGoogle Scholar
  27. Fernandes, J. F., A. L. T. Souza & M. O. Tanaka, 2014. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724: 175–185.CrossRefGoogle Scholar
  28. Fox, J. & S. Weisberg, 2011. Car: companion to applied regression. Available at: Accessed 20.
  29. Goodland, R., 1995. The concept of environmental sustainability. Annual Review of Ecology and Systematics 26: 1–24.CrossRefGoogle Scholar
  30. Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Ktanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental contexto. Ecology and Evolution 3: 4473–4487.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hasegawa, M., M. T. Ito, T. Yoshida, T. Seino, A. Y. C. Chung & K. Kityama, 2014. The effects of reduced-impact logging practices on soil animal communities in the Deramakot Forest Reserve in Borneo. Applied Soil Ecology 83: 13–21.CrossRefGoogle Scholar
  32. Hirai, E. H., J. O. P. Carvalho & K. A. O. Pinheiro, 2008. Estrutura da população de Maçaranduba (Manilkara huberi Standley) em 84 ha de floresta natural na fazenda Rio Capim, Paragominas, PA. Revista de Ciências Agrárias 49: 65–76.Google Scholar
  33. Holmes, T. P., G. M. Blate, J. C. Zweede, Jr. R. Pereira, P. Barreto & F. Boltz, 2002. Custos e benefícios financeiros da exploração florestal de impacto reduzido em comparação à exploração florestal convencional na Amazônia Oriental. Fundação Floresta Tropical/Instituto Florestal Tropical (IFT).Google Scholar
  34. Huntingford, C., P. O. Harris, N. Gedney, P. M. Cox, R. A. Betts, J. A. Marengo & J. H. C. Gash, 2004. Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology 78: 177–185.CrossRefGoogle Scholar
  35. Jackson, J. E., 1991. A User’s Guide to Principal Components. Wiley, New York.CrossRefGoogle Scholar
  36. Johns, J. S., P. Barreto & C. Uhl, 1996. Logging damage during planned and unplanned logging operations in the eastern Amazon. Forest Ecology and Management 89: 59–77.CrossRefGoogle Scholar
  37. Jones, C. C., K. McConnell, P. Coleman, P. Cox, P. Faloon, D. Jenkinson & D. Powlson, 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of carbon in soils. Global Change Biology 11: 114–166.CrossRefGoogle Scholar
  38. Jordão, C. P., P. R. S. Ribeiro, A. T. Matos & R. B. A. Fernandes, 2007. Aquatic contamination of the Turvo Limpo river basin at the Minas Gerais state, Brazil. Revista Brasileira de Biologia 18: 116–125.Google Scholar
  39. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Second English Edition. Elsevier, Amsterdam.Google Scholar
  40. Lenat, D. R. & M. T. Barbour, 1994. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: rapid bioassessment. In Loeb, S. L. & A. Spacie (eds), Biological Monitoring of Aquatic Systems. Lewis Publishers, Boca Raton: 187–215.Google Scholar
  41. Miller, R. L., W. L. Bradford & N. E. Peters, 1988. Specific conductance: theoretical considerations and application to analytical quality control. In: US Government Printing Office.Google Scholar
  42. Nabout, J. C., T. Siqueira, L. M. Bini & I. D. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35(5): 720–726.CrossRefGoogle Scholar
  43. Nogueira, D. S., L. B. Calvão, L. F. A. Montag, L. Juen & P. De Marco, 2016. Little effects of reduced-impact logging on insect communities in eastern Amazonia. Environmental Monitoring and Assessment 188(7): 1–20.CrossRefGoogle Scholar
  44. Oksanen, J. et al., 2013. Package ‘vegan’. Community ecology package, version, v. 2, n. 9.Google Scholar
  45. Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.CrossRefPubMedGoogle Scholar
  46. Peck, D.V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. Mccormick, S. A. Peterson, P. L. Ringold, T. Magee & M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program – Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA 600/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.Google Scholar
  47. Polegatto, C. M. & C. P. Froehlich, 2003. Feeding strategies. In Gaino, E. (ed.), Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. Research Update on Ephemeroptera & Plecoptera. University of Perugia: 55–61.Google Scholar
  48. Popielarz, P. A. & Z. P. Neal, 2007. The niche as a theoretical tool. Annual Review of Sociology 33: 65–84.CrossRefGoogle Scholar
  49. Pringle, C., 2003. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685–2689.CrossRefGoogle Scholar
  50. Prudente, B. S., P. S. Pompeu, L. Juen & L. F. A. Montag, 2017. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshwater Biology 62(2): 303–316.CrossRefGoogle Scholar
  51. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  52. Core Team, R., 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna: 2013.Google Scholar
  53. Reid, D. J., J. M. Quinn & A. E. Wright-Stow, 2010. Responses of stream macroinvertebrates communities to progressive forest harvesting: influences of harvest intensity, stream size and riparian buffers. Forest Ecology and Management 260: 1804–1815.CrossRefGoogle Scholar
  54. Rosenberg, D. M. & V. H. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.Google Scholar
  55. Shimano, Y., H. S. Cabette, F. F. Salles & L. Juen, 2010. Composition and distribution of Ephemeroptera (Insecta) in Cerrado-Amazonia transition area, Brazil. Iheringia. Série Zoologia 100(4): 301–308.CrossRefGoogle Scholar
  56. Shimano, Y. & L. Juen, 2016. How oil palm cultivation is affecting mayfly assemblages in Amazon streams. Annales de Limnologie-International Journal of Limnology 52: 35–45.CrossRefGoogle Scholar
  57. Shimano, Y., F. F. Salles, L. R. Faria, H. S. Cabette & D. S. Nogueira, 2012. Spatial distribution of trophic guilds and community structure of Ephemeroptera (Insecta) in streams of the Cerrado region in Mato Grosso, Brazil. Iheringia. Série Zoologia 102(2): 187–196.CrossRefGoogle Scholar
  58. Simpson, G. L., 2012. Permute: Functions for generating restricted permutations of data. R package version 0.7-0 ed.Google Scholar
  59. Siqueira, T., L. M. Bini, M. V. Cianciaruso, F. O. Roque & S. Trivinho-Strixino, 2009. The role of niche measures in explaining the abundance–distribution relationship in tropical lotic chironomids. Hydrobiologia 636(1): 163.CrossRefGoogle Scholar
  60. Sist, P. & F. N. Ferreira, 2007. Sustainability of reduced-impact logging in the Eastern Amazon. Forest Ecology and Management 243: 199–209.CrossRefGoogle Scholar
  61. Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal Animal Ecology 46: 337–365.CrossRefGoogle Scholar
  62. Sparovek, G., A. Barretto, I. Klug, L. Papp & J. Lino, 2011. A revisão do Código Florestal brasileiro. Novos Estudos – CEBRAP, Fonte: 111–135.Google Scholar
  63. Superintendência do Desenvolvimento da Amazônia (SUDAM), 1993. Plano de Desenvolvimento da Amazônia 1994/1997. SUDAM, Belém.Google Scholar
  64. Tritsch, I., P. Sist, I. S. Narvaes, L. Mazzei, L. Blanc, C. Bourgoin, G. Cornu & V. Gond, 2016. Multiple patterns of forest disturbance and logging shape forest landscapes in Paragominas, Brazil. Forests 7(12): 315.CrossRefGoogle Scholar
  65. Uhl, C., P. Barreto, A. Veríssimo, E. Vidal, P. Amaral, A. C. Barros, C. Jr, J. Johns Souza & J. Gerwing, 1997. Natural resource management in the Brazilian Amazon: an integrated research approach. BioScience 47: 160–199.CrossRefGoogle Scholar
  66. Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85(2): 183–206.CrossRefPubMedGoogle Scholar
  67. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0-387-95457-0.CrossRefGoogle Scholar
  68. Von Sperling, M., 2017. Wastewater Characteristics, Treatment and Disposal. IWA Publishing, London.Google Scholar
  69. Whitmore, T. C., 1990. An Introduction to Tropical Rain Forests. Oxford University Press, Oxford.Google Scholar
  70. Wilks, S. S., 1932. Certain Generalizations in the Analysis of Variance. Biometrika, Cambridge 24: 471–494.CrossRefGoogle Scholar
  71. Yoshimura, M., 2012. Effects of forest disturbances on aquatic insect assemblages. Entomological Science 15: 145–154.CrossRefGoogle Scholar
  72. Zaiha, A. N., M. M. Ismid & M. S. Azri, 2015. Effects of logging activities on ecological water quality indicators in the Berasau River, Johor, Malaysia. Environmental Monitoring and Assessment 187: 493.CrossRefGoogle Scholar
  73. Zarin, D. J., M. D. Schulze, E. Vidal & M. Lentini, 2007. Beyond reaping the first harvest: management objectives for timber production in the Brazilian Amazon. Conservation Biology 21: 916–925.CrossRefPubMedGoogle Scholar
  74. Zar, J. H., 2010. Biostatistical Analysis. Prentice-Hall/Pearson, Upper Saddle River: 944.Google Scholar
  75. Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mylena Neves Cardoso
    • 1
    • 2
    • 4
    Email author
  • Lenize Batista Calvão
    • 2
    • 3
    • 4
  • Luciano Fogaça de Assis Montag
    • 4
    • 5
  • Bruno Spacek Godoy
    • 1
    • 6
  • Leandro Juen
    • 1
    • 2
    • 3
    • 4
  1. 1.Programa de Pós-Graduação em Ecologia Aquática e Pesca, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  2. 2.Programa de Pós-Graduação em Zoologia, Instituto de Ciências BiológicasUniversidade Federal do Pará/Museu Paraense Emílio GoeldiBelémBrazil
  3. 3.Programa de Pós-Graduação em Ecologia, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  4. 4.Laboratório de Ecologia e Conservação-LABECO, Instituto de Ciências BiológicasUniversidade Federal do ParáBelémBrazil
  5. 5.Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationUSA
  6. 6.Núcleo de Ciências Agrárias e Desenvolvimento RuralUniversidade Federal do ParáBelémBrazil

Personalised recommendations