, Volume 823, Issue 1, pp 169–189 | Cite as

Temporal and spatial patterns of freshwater decapods associated with aquatic vegetation from floodplain rivers

  • María Victoria TorresEmail author
  • Federico Giri
  • Pablo Agustín Collins
Primary Research Paper


The presence of freshwater decapods may be considered dependent on the habitat and vegetation characteristics in floodplain rivers. Water level can influence the availability of macrophytes and the associated species composition of freshwater decapods. Changes in the sex ratios, abundances and body sizes of Macrobrachium borellii, Palaemon argentinus and Trichodactylus borellianus were investigated focusing on the type (floating, emergent) and the presence/absence of macrophytes in the Middle Paraná River floodplains. Organisms were sampled and analysed from river sites with floating, emergent vegetation and vegetation-free waters during different hydrological periods. The presence of macrophytes and some environmental variables during different hydrological and seasonal periods affected the variations in the species composition of decapods. M. borellii and T. borellianus tended to increase with the increase in floating vegetation in high waters, while P. argentinus was abundant in emergent vegetation and vegetation-free waters in low waters. Macrophytes provide food and shelter for freshwater decapods, influencing the species abundance according to the ecological response of each species. Variations in macrophytes composition due to water-level fluctuations modify the abundance of freshwater decapods, altering the species composition of decapod assemblages. Floodplain rivers are complex systems that act as macrofactors that regulate other factors that impact species composition.


Aquatic vegetation Freshwater decapods Floodplain Water fluctuations Abundance Body size 



This research was supported by grants from the Project PICT, “Distancias y cercanías en las estrategias tróficas de crustáceos decápodos”, 2014–2017, whose director is Pablo Agustín Collins.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alon, N. C. & S. E. Stancyk, 1982. Variation in life-history patterns of the grass shrimp Palaemonetes pugio in two South Carolina estuaries systems. Marine Biology 68: 265–276.CrossRefGoogle Scholar
  2. Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.CrossRefGoogle Scholar
  3. Aoyagui, A. S. M. & C. C. Bonecker, 2004. Rotifers in different environments of the Upper Parana River floodplain (Brazil): richness, abundance and the relationship with connectivity. Hydrobiologia 522: 281–290.CrossRefGoogle Scholar
  4. Arrington, D. A., K. O. Winemiller & C. A. Layman, 2005. Community assembly at the patch scale in a species-rich tropical river. Oecologia 144: 157–167.CrossRefPubMedGoogle Scholar
  5. Arrington, D. A., B. K. Davidson, K. O. Winemiller & C. A. Layman, 2006. Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species. Journal of Fish Biology 68(5): 1347–1361.CrossRefGoogle Scholar
  6. Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, F. Scheipl, G. Grothendieck, P. Green & G. Grothendieck, 2015. Package ‘lme4’. Convergence 12: 1.Google Scholar
  7. Beck, J. T. & B. C. Cowell, 1976. Life history and ecology of the freshwater caridean shrimp, Palaemonetes paludosus (Gibbes). American Midland Naturalist 96(1): 52–65.CrossRefGoogle Scholar
  8. Beklioglu, M., G. Altinayar & C. O. Tan, 2007. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Fundamental and Applied Limnology 166: 535–556.Google Scholar
  9. Blanck, A. & N. Lamouroux, 2007. Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34: 862–875.CrossRefGoogle Scholar
  10. Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters & S. Sams, 1978. Relationships between body size and some life history parameters. Oecologia 37: 257–272.CrossRefPubMedGoogle Scholar
  11. Bonetto, A. A. & I. R. Wais, 1995. Southern South American streams and rivers. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds), Ecosystems of the World, Vol. 22., River and stream ecosystems Amsterdam, Netherlands: 257–293.Google Scholar
  12. Boschi, E. E., 1981. Decapoda Natantia. Fauna de Agua Dulce de la República Argentina. FECIC 26: 1–61.Google Scholar
  13. Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.CrossRefGoogle Scholar
  14. Cazzanelli, M., T. P. Warming & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605(1): 113–122.CrossRefGoogle Scholar
  15. Chen, S. M. & J. C. Chen, 2003. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 218(1): 613–623.CrossRefGoogle Scholar
  16. Chiarucci, A., G. Bacaro & S. M. Scheiner, 2011. Old and new challenges in using species diversity for assessing biodiversity. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366(1576): 2426–2437.CrossRefPubMedGoogle Scholar
  17. Choi, J. Y., K. S. Jeong, G. H. La, S. K. Kim & G. J. Joo, 2014. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73(1): 197–202.CrossRefGoogle Scholar
  18. Collins, P. A., 1999. Feeding of Palaemonetes argentinus (Decapoda: Palaemonidae) from an Oxbow Lake of the Parana River. Argentina. Journal of Crustacean Biology 19(3): 485–492.CrossRefGoogle Scholar
  19. Collins, P. A., 2000. Mecanismos de coexistencia en poblaciones de Palaemónidos dulciacuícolas (Crustacea, Decapoda, Caridea). Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina.Google Scholar
  20. Collins, P. A., 2005. A coexistence mechanism for two freshwater prawns in the Paraná River floodplain, Argentina. Journal of Crustacean Biology 25(2): 219–225.CrossRefGoogle Scholar
  21. Collins, P. A., F. Giri & V. Williner, 2006. Population dynamics of Trichodactylus borellianus (Crustacea. Decapoda. Brachyura) and interactions with the aquatic vegetation of the Paraná River (South America, Argentina). Annales de Limnologie 42: 19–25.CrossRefGoogle Scholar
  22. Collins, P. A., V. Williner & F. Giri, 2007. Littoral communities. Macrocrustaceans. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 277–301.CrossRefGoogle Scholar
  23. Colmer, T. D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environment 26: 17–36.CrossRefGoogle Scholar
  24. Copatti, C. E., R. P. Legramanti, A. Trevisan & S. Santos, 2016. Method of capture and population structure of Aegla georginae Santos and Jara, 2013 (Decapoda: Anomura: Aeglidae) in a tributary of the Ibicuí River in southern Brazil. Brazilian Journal of Biology 76(4): 1035–1042.CrossRefGoogle Scholar
  25. Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. Zoobenthic species influence energy flows and nutrient cycling. Bioscience 49: 119–127.CrossRefGoogle Scholar
  26. Collart, O. O. & L. C. Moreira, 1993. Potencial pesqueiro de Macrobrachium amazonicum na Amazônia Central (Ilha do Careiro): variação da abundância e do comprimento. Amazoniana 12: 399–413.Google Scholar
  27. Cremona, F., D. Planas & M. Lucotte, 2008. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundamental and Applied Limnology 171(2): 119–130.CrossRefGoogle Scholar
  28. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.CrossRefGoogle Scholar
  29. Depetris, P. J. & A. I. Pasquini, 2007. The geochemistry of the Paraná River: an overview. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 143–174.CrossRefGoogle Scholar
  30. Diehl, S., 1992. Fish predation and benthic community structure-the role of omnivory and habitat complexity. Ecology 73: 1646–1661.CrossRefGoogle Scholar
  31. Drago, E. & A. Paira, 1985. Limnologia fisica. In INALI (ed.), Cuenca de1 río Saladillo. Informe (Convenio AyE e INALI), Santo Tomé, Santa Fe: 19–78.Google Scholar
  32. Dube, T., L. DeNecker, J. H. Van Vuren, V. Wepener, N. J. Smit & L. Brendonck, 2017. Spatial and temporal variation of invertebrate community structure in flood-controlled tropical floodplain wetlands. Journal of Freshwater Ecology 32(1): 1–15.CrossRefGoogle Scholar
  33. Dudgeon, D., 1999. Tropical Asian Streams: Zoobenthos, Ecology and Conservation. Hong Kong University Press, Hong Kong.Google Scholar
  34. Emmerson, M., J. M. Montoya & G. Woodward, 2006. Body size, interaction strength, and food web dynamics. In de Ruiter, P., V. Wolters, J. Moore & K. Melville-Smith (eds), Dynamic Food Webs. Elsevier, Amsterdam: 167–178.Google Scholar
  35. Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2010. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211.CrossRefGoogle Scholar
  36. Fitzgerald, D. B., K. O. Winemiller, M. H. Sabaj Pérez & L. M. Sousa, 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98(1): 21–31.CrossRefPubMedGoogle Scholar
  37. Fontanarrosa, M. S., G. N. Chaparro & I. O’Farrell, 2013. Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33(1): 47–63.CrossRefGoogle Scholar
  38. Gaston, K. J., S. L. Chown & K. L. Evans, 2008. Ecogeographical rules: elements of a synthesis. Journal of Biogeography 35: 483–500.CrossRefGoogle Scholar
  39. Gribben, P. E. & J. T. Wright, 2014. Habitat-former effects on prey behaviour increase predation and non-predation mortality. Journal of Animal Ecology 83(2): 388–396.CrossRefPubMedGoogle Scholar
  40. Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown, 2007. Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, UK.CrossRefGoogle Scholar
  41. Hirota, M. & T. Tsuchiya, 2003. Indirect method to estimate convective gas flow through culms of a Phragmites australis stand. Limnology 4: 149–153.CrossRefGoogle Scholar
  42. Iriondo, M. H., 2004. The littoral complex at the Paraná mouth. Quaternary International 114: 143–154.CrossRefGoogle Scholar
  43. Iriondo, M. H. & A. R. Paira, 2007. Physical geography of the basin. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 7–31.CrossRefGoogle Scholar
  44. Ituarte, R. B., A. A. L. Mañanes, E. D. Spivak & K. Anger, 2008. Activity of Na+ , K+ ATPase in a freshwater shrimp, Palaemonetes argentinus (Caridea, Palaemonidae): ontogenetic and salinity-induced changes. Aquatic Biology 3: 283–290.CrossRefGoogle Scholar
  45. Ituarte, R. B., M. G. Vázquez, M. de los Ángeles González-Sagrario & E. D. Spiva, 2014. Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp. Zoology 117(2): 139–145.CrossRefPubMedGoogle Scholar
  46. Jedicke, A., B. Furch, U. Saint-Paul & U. Schute, 1989. Increase in the oxygen concentration in Amazon waters resulting from the root exudation of two notorious water plants, Eichhornia crassipes (Potenderiaceae) and Pistia stratoides (Araceae). Amazoniana 11(1): 53–89.Google Scholar
  47. Jefferies, D. J., 1964. The moulting behaviour of Palaemonetes varians (Leach) (Decapoda, Palaemonidae). Hydrobiologia 24: 457–488.CrossRefGoogle Scholar
  48. José de Paggi, S. & W. Koste, 1988. Rotifera from Saladillo river basin (Santa Fe province, Argentina). Hydrobiologia 157: 13–20.CrossRefGoogle Scholar
  49. José de Paggi, S. & J. C. Paggi, 2007. Zooplancton. In Iriondo M. H, J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland Springer, Heidelberg: 229–245.Google Scholar
  50. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge D. P (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.Google Scholar
  51. Kaller, M. D., R. F. Keim, B. L. Edwards, A. R. Harlan, T. E. Pasco, W. E. Kelso & D. A. Rutherford, 2015. Aquatic vegetation mediates the relationship between hydrologic connectivity and water quality in a managed floodplain. Hydrobiologia 760(1): 29–41.CrossRefGoogle Scholar
  52. Kornijów, R., G. J. Measey & B. Moss, 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshwater Biology 61: 32–50.CrossRefGoogle Scholar
  53. Kuznetsova A., P. B Brockhoff & R. R. Bojesen-Christensen, 2014. lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-6.Google Scholar
  54. Laurindo da Silva, F., H. R. Neves Oliveira, S. Cunha Escarpinati, A. A. Fonseca-Gessner & M. C. De Paula, 2011. Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis Aublet and Salvinia auriculata Aublet by aquatic macroinvertebrates in a tropical reservoir. Ambiente & Agua-An Interdisciplinary Journal of Applied Science 6: 30–39.CrossRefGoogle Scholar
  55. Layman, C. A., C. G. Montaña & J. E. Allgeier, 2010. Linking fish colonization rates and water level change in littoral habitats of a Venezuelan floodplain river. Aquatic Ecology 44: 269–273.CrossRefGoogle Scholar
  56. Lima, J. D. F., L. M. A. D. Silva, T. C. D. Silva, J. D. S. Garcia, I. D. S. Pereira & K. D. S. Amaral, 2014. Reproductive aspects of Macrobrachium amazonicum (Decapoda: Palaemonidae) in the State of Amapá, Amazon River mouth. Acta Amazonica 44(2): 245–254.CrossRefGoogle Scholar
  57. Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.CrossRefGoogle Scholar
  58. MacAbendroth, L., P. Ramsay, A. Foggo, S. Rundle & D. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.CrossRefGoogle Scholar
  59. Magalhães, C. & M. Türkay, 1996. Taxonomy of the neotropical freshwater crab family Trichodactylidae I. The generic system with description of some new genera. Senckenbergiana Biologica 75: 63–95.Google Scholar
  60. Mantelatto, F. L. & L. R. Barbosa, 2005. Population structure and relative growth of freshwater prawn Macrobrachium brasiliense (Decapoda, Palaemonidae) from São Paulo State, Brazil. Acta Limnologica Brasiliensia 17(3): 245–255.Google Scholar
  61. Marchetti, Z. Y., E. M. Latrubesse, M. S. Pereira & C. G. Ramonell, 2013. Vegetation and its relationship with geomorphologic units in the Parana River floodplain, Argentina. Journal of South American Earth Sciences 46: 122–136.CrossRefGoogle Scholar
  62. Mayora, G., M. Devercelli & F. Giri, 2013. Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717: 51–63.CrossRefGoogle Scholar
  63. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  64. Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  65. Montoya, J. V., 2003. Freshwater shrimps of the genus Macrobrachium associated with roots of Eichhornia crassipes (Water Hyacinth) in the Orinoco Delta (Venezuela). Caribbean Journal of Science 39: 155–159.Google Scholar
  66. Montoya, J. V., D. A. Arrington & K. O. Winemiller, 2014. Seasonal and diel variation of shrimp (Crustacea, Decapoda) on sandbanks of a tropical floodplain river. Journal of Natural History 48(9–10): 557–574.CrossRefGoogle Scholar
  67. Musin, G. E., F. R. Molina, F. Giri & V. Williner, 2015. Structure and density population of the invasive mollusc Limnoperna fortunei associated with Eichhornia crassipes in lakes of the Middle Paraná floodplain. Journal of Limnology 74(3): 537–548.Google Scholar
  68. Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.Google Scholar
  69. Neiff, J. J., A. Poi & S. Casco, 2001. The effect of prolonged floods on Eichhornia crassipes growth in Paraná River floodplain lakes. Acta Limnologica Brasiliensia 13(1): 51–60.Google Scholar
  70. Neiff, J. J., S. L. Casco, E. K. A. Mari, J. A. Di Rienzo & A. S. Poi, 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquatic Botany 114: 50–57.CrossRefGoogle Scholar
  71. Nessimian, J. L., L. F. M. Dorvillé, A. M. Sanseverino & D. F. Baptista, 1998. Relation between flood pulse and functional composition of the macroinvertebrate benthic fauna in the lower Rio Negro, Amazonas, Brazil. Amazoniana 15: 35–50.Google Scholar
  72. Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield & P. Williams, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120(2): 261–278.CrossRefGoogle Scholar
  73. Odinetz-Collard, O., 1987. La pêche crevettière de Macrobrachium amazonicum (Palaemonidae) dans le Bas Tocantins, après la fermeture du barrage de Tucurui (Brésil). Revue d’Hydrobiologie Tropicale 20: 131–144.Google Scholar
  74. Ohtaka, A., T. Narita, T. Kamiya, H. Katakura, Y. Araki, S. Im, R. Chhay & S. Tsukawaki, 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144.CrossRefGoogle Scholar
  75. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H. Stevens, M. J. Oksanen & M. A. S. S. Suggests, 2007. The vegan package. Community Ecology Package 10: 631–637.Google Scholar
  76. Pervaiz, P. A., M. Sudan & S. Manohar, 2015. Studies on the effect of photoperiodism and temperature on moulting of a freshwater prawn Macrobrachium dayanum. International Journal of Fisheries and Aquatic Studies 3(1): 325–328.Google Scholar
  77. Pagano, A. M. & J. E. Titus, 2004. Submersed macrophyte growth at low pH: contrasting responses of three species to dissolved inorganic carbon enrichment and sediment type. Aquatic Botany 79(1): 65–74.CrossRefGoogle Scholar
  78. Paillisson, J. M. & L. Marion, 2006. Can small water level fluctuations affect the biomass of Nymphaea alba in large lakes? Aquatic Botany 84: 259–266.CrossRefGoogle Scholar
  79. Poi de Neiff, A. & R. Carignan, 1997. Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia 345: 185–196.CrossRefGoogle Scholar
  80. Poi de Neiff, A. & J. J. Neiff, 1980. Los camalotales de Eichhornia crassipes en aguas lóticas del Paraná y su fauna asociada. Ecosur 7(14): 185–199.Google Scholar
  81. Poi de Neiff, A. & J. J. Neiff, 2006. Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del Río Paraná (Argentina). Interciencia 31: 220–225.Google Scholar
  82. Pott, V. J. & A. Pott, 2000. Plantas aquáticas do Pantanal. In: EMBRAPA Comunicação para transferência de Tecnologia: 404.Google Scholar
  83. Renzulli, P. & P. Collins, 2000. Influencia de la temperatura en el crecimiento del cangrejo Trichodactylus borellianus. FABICIB 4: 129–136.CrossRefGoogle Scholar
  84. Richardson, A. J. & R. A. Cook, 2006. Habitat use by caridean shrimps in lowland rivers. Marine and Freshwater Research 57: 695–701.CrossRefGoogle Scholar
  85. R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  86. Robertson, A. W. & C. R. Mechoso, 1998. Interannual and decadal cycles in river flows of southeastern South America. Journal of Climate 11: 2570–2581.CrossRefGoogle Scholar
  87. Rohlf, F. J. 2010. TpsDig2 version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  88. Ruppert, E. E. & R. D. Barnes, 1994. Invertebrate Zoology, 6th ed. Saunders College Publ, Philadelphia, PA.Google Scholar
  89. Sabattini, R. A. & V. H. Lallana, 2007. Aquatic macrophytes. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 205–226.CrossRefGoogle Scholar
  90. Sooknah, R. D. & A. C. Wilkie, 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering 22(1): 27–42.CrossRefGoogle Scholar
  91. St Pierre, J. I. & K. E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5(2): 1–10.CrossRefGoogle Scholar
  92. Szabo, S., R. Roijackers, M. Scheffer & G. Borics, 2005. The strength of limiting factors for duckweed during algal competition. Archiv fuer Hydrobiologie 164: 127–140.CrossRefGoogle Scholar
  93. Taniguchi, H., S. Takano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.CrossRefGoogle Scholar
  94. Tessier, C., A. Cattaneo, B. Pinel-Alloul & C. Hudon, 2007. Invertebrate communities and epiphytic biomass associated with metaphyton and emergent and submerged macrophytes in a large river. Aquatic Sciences 70: 10–20.CrossRefGoogle Scholar
  95. Thomaz, S. M. & E. R. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.CrossRefGoogle Scholar
  96. Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.Google Scholar
  97. Torres, M. V, 2016. Decápodos dulceacuícolas del Paraná medio: relación entre la dinámica de las poblaciones y del río en una escala metapoblacional. Ph.D. Thesis, Universidad Nacional del Litoral, Santa Fe, Argentina.Google Scholar
  98. Torres, M. V., F. Giri & P. A. Collins, 2016. ‘La Niña’ phenomenon and the relationship between decapod populations and fishes in temporarily isolated shallow lakes. Marine and Freshwater Research 68: 1010–1022.CrossRefGoogle Scholar
  99. Van Onsem, S., S. De Backer & L. Triest, 2010. Microhabitat-zooplankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds. Hydrobiologia 656: 67–81.CrossRefGoogle Scholar
  100. Veen, T., B. C. Sheldon, F. J. Weissing, M. E. Visser, A. Qvarnström & G. P. Sætre, 2010. Temporal differences in food abundance promote coexistence between two congeneric passerines. Oecologia 162: 873–884.CrossRefPubMedGoogle Scholar
  101. Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.CrossRefGoogle Scholar
  102. Wessell, K. J., R. W. Merritt & K. W. Cummins, 2001. Distribution, diel movement, and growth of the grass shrimp Palaemonetes paludosus in the Kissimmee River-floodplain ecosystem, Florida. Annales de Limnologie—International Journal of Limnology 37(2): 85–95.CrossRefGoogle Scholar
  103. Williams, K. L., K. C. Navins & S. E. Lewis, 2016. Behavioral responses to predation risk in brooding female amphipods (Gammarus pseudolimnaeus). Journal of Freshwater Ecology 31(4): 571–581.CrossRefGoogle Scholar
  104. Williner, V. & P. A. Collins, 2000. ¿Existe jerarquización en las poblaciones de Palaemónidos del valle aluvial del Río Paraná? Natura Neotropicalis 31(1–2): 53–60.Google Scholar
  105. Williner, V., F. Giri & P. A. Collins, 2010. Metapopulations of Decapods in the floodplain of Parana River, South America. In Alvarez, M. A. (ed.), Floodplains: physical geography, ecology and societal interactions. Nova Science Publication, New York: 179–199.Google Scholar
  106. Winemiller, K. O., 2004. Floodplain river food webs: generalizations and implications for fisheries management. In Welcomme R. L. & T. Petr, Proceedings of the second international symposium on the management of large rivers for fisheries. Food and Agriculture Organization & Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok: 285–309.Google Scholar
  107. Zar, J. H., 2010. Biostatistical analysis, 5th ed. Pearson Education Ltd., London, United Kingdom.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • María Victoria Torres
    • 1
    Email author
  • Federico Giri
    • 1
    • 2
  • Pablo Agustín Collins
    • 1
    • 3
  1. 1.Instituto Nacional de Limnología (CONICET-UNL), Ciudad UniversitariaSanta FeArgentina
  2. 2.Facultad de Humanidades y Ciencias (UNL), Ciudad UniversitariaSanta FeArgentina
  3. 3.Facultad de Bioquímica y Ciencias Biológicas (UNL), Ciudad UniversitariaSanta FeArgentina

Personalised recommendations