Skip to main content
Log in

Temporal and spatial patterns of freshwater decapods associated with aquatic vegetation from floodplain rivers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The presence of freshwater decapods may be considered dependent on the habitat and vegetation characteristics in floodplain rivers. Water level can influence the availability of macrophytes and the associated species composition of freshwater decapods. Changes in the sex ratios, abundances and body sizes of Macrobrachium borellii, Palaemon argentinus and Trichodactylus borellianus were investigated focusing on the type (floating, emergent) and the presence/absence of macrophytes in the Middle Paraná River floodplains. Organisms were sampled and analysed from river sites with floating, emergent vegetation and vegetation-free waters during different hydrological periods. The presence of macrophytes and some environmental variables during different hydrological and seasonal periods affected the variations in the species composition of decapods. M. borellii and T. borellianus tended to increase with the increase in floating vegetation in high waters, while P. argentinus was abundant in emergent vegetation and vegetation-free waters in low waters. Macrophytes provide food and shelter for freshwater decapods, influencing the species abundance according to the ecological response of each species. Variations in macrophytes composition due to water-level fluctuations modify the abundance of freshwater decapods, altering the species composition of decapod assemblages. Floodplain rivers are complex systems that act as macrofactors that regulate other factors that impact species composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alon, N. C. & S. E. Stancyk, 1982. Variation in life-history patterns of the grass shrimp Palaemonetes pugio in two South Carolina estuaries systems. Marine Biology 68: 265–276.

    Article  Google Scholar 

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • Aoyagui, A. S. M. & C. C. Bonecker, 2004. Rotifers in different environments of the Upper Parana River floodplain (Brazil): richness, abundance and the relationship with connectivity. Hydrobiologia 522: 281–290.

    Article  Google Scholar 

  • Arrington, D. A., K. O. Winemiller & C. A. Layman, 2005. Community assembly at the patch scale in a species-rich tropical river. Oecologia 144: 157–167.

    Article  PubMed  Google Scholar 

  • Arrington, D. A., B. K. Davidson, K. O. Winemiller & C. A. Layman, 2006. Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species. Journal of Fish Biology 68(5): 1347–1361.

    Article  CAS  Google Scholar 

  • Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, F. Scheipl, G. Grothendieck, P. Green & G. Grothendieck, 2015. Package ‘lme4’. Convergence 12: 1.

    Google Scholar 

  • Beck, J. T. & B. C. Cowell, 1976. Life history and ecology of the freshwater caridean shrimp, Palaemonetes paludosus (Gibbes). American Midland Naturalist 96(1): 52–65.

    Article  Google Scholar 

  • Beklioglu, M., G. Altinayar & C. O. Tan, 2007. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Fundamental and Applied Limnology 166: 535–556.

    Google Scholar 

  • Blanck, A. & N. Lamouroux, 2007. Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34: 862–875.

    Article  Google Scholar 

  • Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters & S. Sams, 1978. Relationships between body size and some life history parameters. Oecologia 37: 257–272.

    Article  PubMed  CAS  Google Scholar 

  • Bonetto, A. A. & I. R. Wais, 1995. Southern South American streams and rivers. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds), Ecosystems of the World, Vol. 22., River and stream ecosystems Amsterdam, Netherlands: 257–293.

    Google Scholar 

  • Boschi, E. E., 1981. Decapoda Natantia. Fauna de Agua Dulce de la República Argentina. FECIC 26: 1–61.

    Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. L. Lauridsen, 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Cazzanelli, M., T. P. Warming & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605(1): 113–122.

    Article  Google Scholar 

  • Chen, S. M. & J. C. Chen, 2003. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 218(1): 613–623.

    Article  Google Scholar 

  • Chiarucci, A., G. Bacaro & S. M. Scheiner, 2011. Old and new challenges in using species diversity for assessing biodiversity. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366(1576): 2426–2437.

    Article  PubMed  Google Scholar 

  • Choi, J. Y., K. S. Jeong, G. H. La, S. K. Kim & G. J. Joo, 2014. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73(1): 197–202.

    Article  Google Scholar 

  • Collins, P. A., 1999. Feeding of Palaemonetes argentinus (Decapoda: Palaemonidae) from an Oxbow Lake of the Parana River. Argentina. Journal of Crustacean Biology 19(3): 485–492.

    Article  Google Scholar 

  • Collins, P. A., 2000. Mecanismos de coexistencia en poblaciones de Palaemónidos dulciacuícolas (Crustacea, Decapoda, Caridea). Ph.D. Thesis, Universidad Nacional de La Plata, La Plata, Argentina.

  • Collins, P. A., 2005. A coexistence mechanism for two freshwater prawns in the Paraná River floodplain, Argentina. Journal of Crustacean Biology 25(2): 219–225.

    Article  Google Scholar 

  • Collins, P. A., F. Giri & V. Williner, 2006. Population dynamics of Trichodactylus borellianus (Crustacea. Decapoda. Brachyura) and interactions with the aquatic vegetation of the Paraná River (South America, Argentina). Annales de Limnologie 42: 19–25.

    Article  Google Scholar 

  • Collins, P. A., V. Williner & F. Giri, 2007. Littoral communities. Macrocrustaceans. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 277–301.

    Chapter  Google Scholar 

  • Colmer, T. D., 2003. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environment 26: 17–36.

    Article  CAS  Google Scholar 

  • Copatti, C. E., R. P. Legramanti, A. Trevisan & S. Santos, 2016. Method of capture and population structure of Aegla georginae Santos and Jara, 2013 (Decapoda: Anomura: Aeglidae) in a tributary of the Ibicuí River in southern Brazil. Brazilian Journal of Biology 76(4): 1035–1042.

    Article  CAS  Google Scholar 

  • Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems. Zoobenthic species influence energy flows and nutrient cycling. Bioscience 49: 119–127.

    Article  Google Scholar 

  • Collart, O. O. & L. C. Moreira, 1993. Potencial pesqueiro de Macrobrachium amazonicum na Amazônia Central (Ilha do Careiro): variação da abundância e do comprimento. Amazoniana 12: 399–413.

    Google Scholar 

  • Cremona, F., D. Planas & M. Lucotte, 2008. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundamental and Applied Limnology 171(2): 119–130.

    Article  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Depetris, P. J. & A. I. Pasquini, 2007. The geochemistry of the Paraná River: an overview. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 143–174.

    Chapter  Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure-the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Drago, E. & A. Paira, 1985. Limnologia fisica. In INALI (ed.), Cuenca de1 río Saladillo. Informe (Convenio AyE e INALI), Santo Tomé, Santa Fe: 19–78.

  • Dube, T., L. DeNecker, J. H. Van Vuren, V. Wepener, N. J. Smit & L. Brendonck, 2017. Spatial and temporal variation of invertebrate community structure in flood-controlled tropical floodplain wetlands. Journal of Freshwater Ecology 32(1): 1–15.

    Article  CAS  Google Scholar 

  • Dudgeon, D., 1999. Tropical Asian Streams: Zoobenthos, Ecology and Conservation. Hong Kong University Press, Hong Kong.

    Google Scholar 

  • Emmerson, M., J. M. Montoya & G. Woodward, 2006. Body size, interaction strength, and food web dynamics. In de Ruiter, P., V. Wolters, J. Moore & K. Melville-Smith (eds), Dynamic Food Webs. Elsevier, Amsterdam: 167–178.

    Google Scholar 

  • Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2010. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211.

    Article  Google Scholar 

  • Fitzgerald, D. B., K. O. Winemiller, M. H. Sabaj Pérez & L. M. Sousa, 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98(1): 21–31.

    Article  PubMed  Google Scholar 

  • Fontanarrosa, M. S., G. N. Chaparro & I. O’Farrell, 2013. Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33(1): 47–63.

    Article  Google Scholar 

  • Gaston, K. J., S. L. Chown & K. L. Evans, 2008. Ecogeographical rules: elements of a synthesis. Journal of Biogeography 35: 483–500.

    Article  Google Scholar 

  • Gribben, P. E. & J. T. Wright, 2014. Habitat-former effects on prey behaviour increase predation and non-predation mortality. Journal of Animal Ecology 83(2): 388–396.

    Article  PubMed  Google Scholar 

  • Hildrew, A. G., D. G. Raffaelli & R. Edmonds-Brown, 2007. Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, UK.

    Book  Google Scholar 

  • Hirota, M. & T. Tsuchiya, 2003. Indirect method to estimate convective gas flow through culms of a Phragmites australis stand. Limnology 4: 149–153.

    Article  Google Scholar 

  • Iriondo, M. H., 2004. The littoral complex at the Paraná mouth. Quaternary International 114: 143–154.

    Article  Google Scholar 

  • Iriondo, M. H. & A. R. Paira, 2007. Physical geography of the basin. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 7–31.

    Chapter  Google Scholar 

  • Ituarte, R. B., A. A. L. Mañanes, E. D. Spivak & K. Anger, 2008. Activity of Na+ , K+ ATPase in a freshwater shrimp, Palaemonetes argentinus (Caridea, Palaemonidae): ontogenetic and salinity-induced changes. Aquatic Biology 3: 283–290.

    Article  Google Scholar 

  • Ituarte, R. B., M. G. Vázquez, M. de los Ángeles González-Sagrario & E. D. Spiva, 2014. Carryover effects of predation risk on postembryonic life-history stages in a freshwater shrimp. Zoology 117(2): 139–145.

    Article  PubMed  Google Scholar 

  • Jedicke, A., B. Furch, U. Saint-Paul & U. Schute, 1989. Increase in the oxygen concentration in Amazon waters resulting from the root exudation of two notorious water plants, Eichhornia crassipes (Potenderiaceae) and Pistia stratoides (Araceae). Amazoniana 11(1): 53–89.

    Google Scholar 

  • Jefferies, D. J., 1964. The moulting behaviour of Palaemonetes varians (Leach) (Decapoda, Palaemonidae). Hydrobiologia 24: 457–488.

    Article  Google Scholar 

  • José de Paggi, S. & W. Koste, 1988. Rotifera from Saladillo river basin (Santa Fe province, Argentina). Hydrobiologia 157: 13–20.

    Article  Google Scholar 

  • José de Paggi, S. & J. C. Paggi, 2007. Zooplancton. In Iriondo M. H, J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland Springer, Heidelberg: 229–245.

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge D. P (ed.), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.

  • Kaller, M. D., R. F. Keim, B. L. Edwards, A. R. Harlan, T. E. Pasco, W. E. Kelso & D. A. Rutherford, 2015. Aquatic vegetation mediates the relationship between hydrologic connectivity and water quality in a managed floodplain. Hydrobiologia 760(1): 29–41.

    Article  CAS  Google Scholar 

  • Kornijów, R., G. J. Measey & B. Moss, 2016. The structure of the littoral: effects of waterlily density and perch predation on sediment and plant-associated macroinvertebrate communities. Freshwater Biology 61: 32–50.

    Article  Google Scholar 

  • Kuznetsova A., P. B Brockhoff & R. R. Bojesen-Christensen, 2014. lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-6.

  • Laurindo da Silva, F., H. R. Neves Oliveira, S. Cunha Escarpinati, A. A. Fonseca-Gessner & M. C. De Paula, 2011. Colonization of leaf litter of two aquatic macrophytes, Mayaca fluviatilis Aublet and Salvinia auriculata Aublet by aquatic macroinvertebrates in a tropical reservoir. Ambiente & Agua-An Interdisciplinary Journal of Applied Science 6: 30–39.

    Article  Google Scholar 

  • Layman, C. A., C. G. Montaña & J. E. Allgeier, 2010. Linking fish colonization rates and water level change in littoral habitats of a Venezuelan floodplain river. Aquatic Ecology 44: 269–273.

    Article  Google Scholar 

  • Lima, J. D. F., L. M. A. D. Silva, T. C. D. Silva, J. D. S. Garcia, I. D. S. Pereira & K. D. S. Amaral, 2014. Reproductive aspects of Macrobrachium amazonicum (Decapoda: Palaemonidae) in the State of Amapá, Amazon River mouth. Acta Amazonica 44(2): 245–254.

    Article  Google Scholar 

  • Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.

    Article  Google Scholar 

  • MacAbendroth, L., P. Ramsay, A. Foggo, S. Rundle & D. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.

    Article  Google Scholar 

  • Magalhães, C. & M. Türkay, 1996. Taxonomy of the neotropical freshwater crab family Trichodactylidae I. The generic system with description of some new genera. Senckenbergiana Biologica 75: 63–95.

    Google Scholar 

  • Mantelatto, F. L. & L. R. Barbosa, 2005. Population structure and relative growth of freshwater prawn Macrobrachium brasiliense (Decapoda, Palaemonidae) from São Paulo State, Brazil. Acta Limnologica Brasiliensia 17(3): 245–255.

    Google Scholar 

  • Marchetti, Z. Y., E. M. Latrubesse, M. S. Pereira & C. G. Ramonell, 2013. Vegetation and its relationship with geomorphologic units in the Parana River floodplain, Argentina. Journal of South American Earth Sciences 46: 122–136.

    Article  Google Scholar 

  • Mayora, G., M. Devercelli & F. Giri, 2013. Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717: 51–63.

    Article  CAS  Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Montoya, J. V., 2003. Freshwater shrimps of the genus Macrobrachium associated with roots of Eichhornia crassipes (Water Hyacinth) in the Orinoco Delta (Venezuela). Caribbean Journal of Science 39: 155–159.

    Google Scholar 

  • Montoya, J. V., D. A. Arrington & K. O. Winemiller, 2014. Seasonal and diel variation of shrimp (Crustacea, Decapoda) on sandbanks of a tropical floodplain river. Journal of Natural History 48(9–10): 557–574.

    Article  Google Scholar 

  • Musin, G. E., F. R. Molina, F. Giri & V. Williner, 2015. Structure and density population of the invasive mollusc Limnoperna fortunei associated with Eichhornia crassipes in lakes of the Middle Paraná floodplain. Journal of Limnology 74(3): 537–548.

    Google Scholar 

  • Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Neiff, J. J., A. Poi & S. Casco, 2001. The effect of prolonged floods on Eichhornia crassipes growth in Paraná River floodplain lakes. Acta Limnologica Brasiliensia 13(1): 51–60.

    Google Scholar 

  • Neiff, J. J., S. L. Casco, E. K. A. Mari, J. A. Di Rienzo & A. S. Poi, 2014. Do aquatic plant assemblages in the Paraná River change along the river’s length? Aquatic Botany 114: 50–57.

    Article  Google Scholar 

  • Nessimian, J. L., L. F. M. Dorvillé, A. M. Sanseverino & D. F. Baptista, 1998. Relation between flood pulse and functional composition of the macroinvertebrate benthic fauna in the lower Rio Negro, Amazonas, Brazil. Amazoniana 15: 35–50.

    Google Scholar 

  • Nicolet, P., J. Biggs, G. Fox, M. J. Hodson, C. Reynolds, M. Whitfield & P. Williams, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120(2): 261–278.

    Article  Google Scholar 

  • Odinetz-Collard, O., 1987. La pêche crevettière de Macrobrachium amazonicum (Palaemonidae) dans le Bas Tocantins, après la fermeture du barrage de Tucurui (Brésil). Revue d’Hydrobiologie Tropicale 20: 131–144.

    Google Scholar 

  • Ohtaka, A., T. Narita, T. Kamiya, H. Katakura, Y. Araki, S. Im, R. Chhay & S. Tsukawaki, 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144.

    Article  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H. Stevens, M. J. Oksanen & M. A. S. S. Suggests, 2007. The vegan package. Community Ecology Package 10: 631–637.

    Google Scholar 

  • Pervaiz, P. A., M. Sudan & S. Manohar, 2015. Studies on the effect of photoperiodism and temperature on moulting of a freshwater prawn Macrobrachium dayanum. International Journal of Fisheries and Aquatic Studies 3(1): 325–328.

    Google Scholar 

  • Pagano, A. M. & J. E. Titus, 2004. Submersed macrophyte growth at low pH: contrasting responses of three species to dissolved inorganic carbon enrichment and sediment type. Aquatic Botany 79(1): 65–74.

    Article  CAS  Google Scholar 

  • Paillisson, J. M. & L. Marion, 2006. Can small water level fluctuations affect the biomass of Nymphaea alba in large lakes? Aquatic Botany 84: 259–266.

    Article  Google Scholar 

  • Poi de Neiff, A. & R. Carignan, 1997. Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia 345: 185–196.

    Article  Google Scholar 

  • Poi de Neiff, A. & J. J. Neiff, 1980. Los camalotales de Eichhornia crassipes en aguas lóticas del Paraná y su fauna asociada. Ecosur 7(14): 185–199.

    Google Scholar 

  • Poi de Neiff, A. & J. J. Neiff, 2006. Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del Río Paraná (Argentina). Interciencia 31: 220–225.

    Google Scholar 

  • Pott, V. J. & A. Pott, 2000. Plantas aquáticas do Pantanal. In: EMBRAPA Comunicação para transferência de Tecnologia: 404.

  • Renzulli, P. & P. Collins, 2000. Influencia de la temperatura en el crecimiento del cangrejo Trichodactylus borellianus. FABICIB 4: 129–136.

    Article  Google Scholar 

  • Richardson, A. J. & R. A. Cook, 2006. Habitat use by caridean shrimps in lowland rivers. Marine and Freshwater Research 57: 695–701.

    Article  Google Scholar 

  • R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Robertson, A. W. & C. R. Mechoso, 1998. Interannual and decadal cycles in river flows of southeastern South America. Journal of Climate 11: 2570–2581.

    Article  Google Scholar 

  • Rohlf, F. J. 2010. TpsDig2 version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.

  • Ruppert, E. E. & R. D. Barnes, 1994. Invertebrate Zoology, 6th ed. Saunders College Publ, Philadelphia, PA.

    Google Scholar 

  • Sabattini, R. A. & V. H. Lallana, 2007. Aquatic macrophytes. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Heidelberg: 205–226.

    Chapter  Google Scholar 

  • Sooknah, R. D. & A. C. Wilkie, 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering 22(1): 27–42.

    Article  Google Scholar 

  • St Pierre, J. I. & K. E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5(2): 1–10.

    Article  Google Scholar 

  • Szabo, S., R. Roijackers, M. Scheffer & G. Borics, 2005. The strength of limiting factors for duckweed during algal competition. Archiv fuer Hydrobiologie 164: 127–140.

    Article  CAS  Google Scholar 

  • Taniguchi, H., S. Takano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Tessier, C., A. Cattaneo, B. Pinel-Alloul & C. Hudon, 2007. Invertebrate communities and epiphytic biomass associated with metaphyton and emergent and submerged macrophytes in a large river. Aquatic Sciences 70: 10–20.

    Article  Google Scholar 

  • Thomaz, S. M. & E. R. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Torres, M. V, 2016. Decápodos dulceacuícolas del Paraná medio: relación entre la dinámica de las poblaciones y del río en una escala metapoblacional. Ph.D. Thesis, Universidad Nacional del Litoral, Santa Fe, Argentina.

  • Torres, M. V., F. Giri & P. A. Collins, 2016. ‘La Niña’ phenomenon and the relationship between decapod populations and fishes in temporarily isolated shallow lakes. Marine and Freshwater Research 68: 1010–1022.

    Article  Google Scholar 

  • Van Onsem, S., S. De Backer & L. Triest, 2010. Microhabitat-zooplankton relationship in extensive macrophyte vegetations of eutrophic clear-water ponds. Hydrobiologia 656: 67–81.

    Article  CAS  Google Scholar 

  • Veen, T., B. C. Sheldon, F. J. Weissing, M. E. Visser, A. Qvarnström & G. P. Sætre, 2010. Temporal differences in food abundance promote coexistence between two congeneric passerines. Oecologia 162: 873–884.

    Article  PubMed  Google Scholar 

  • Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.

    Article  Google Scholar 

  • Wessell, K. J., R. W. Merritt & K. W. Cummins, 2001. Distribution, diel movement, and growth of the grass shrimp Palaemonetes paludosus in the Kissimmee River-floodplain ecosystem, Florida. Annales de Limnologie—International Journal of Limnology 37(2): 85–95.

    Article  Google Scholar 

  • Williams, K. L., K. C. Navins & S. E. Lewis, 2016. Behavioral responses to predation risk in brooding female amphipods (Gammarus pseudolimnaeus). Journal of Freshwater Ecology 31(4): 571–581.

    Article  CAS  Google Scholar 

  • Williner, V. & P. A. Collins, 2000. ¿Existe jerarquización en las poblaciones de Palaemónidos del valle aluvial del Río Paraná? Natura Neotropicalis 31(1–2): 53–60.

    Google Scholar 

  • Williner, V., F. Giri & P. A. Collins, 2010. Metapopulations of Decapods in the floodplain of Parana River, South America. In Alvarez, M. A. (ed.), Floodplains: physical geography, ecology and societal interactions. Nova Science Publication, New York: 179–199.

    Google Scholar 

  • Winemiller, K. O., 2004. Floodplain river food webs: generalizations and implications for fisheries management. In Welcomme R. L. & T. Petr, Proceedings of the second international symposium on the management of large rivers for fisheries. Food and Agriculture Organization & Mekong River Commission, FAO Regional Office for Asia and the Pacific, Bangkok: 285–309.

  • Zar, J. H., 2010. Biostatistical analysis, 5th ed. Pearson Education Ltd., London, United Kingdom.

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Project PICT, “Distancias y cercanías en las estrategias tróficas de crustáceos decápodos”, 2014–2017, whose director is Pablo Agustín Collins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, M.V., Giri, F. & Collins, P.A. Temporal and spatial patterns of freshwater decapods associated with aquatic vegetation from floodplain rivers. Hydrobiologia 823, 169–189 (2018). https://doi.org/10.1007/s10750-018-3704-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3704-y

Keywords

Navigation