Advertisement

Hydrobiologia

, Volume 822, Issue 1, pp 37–54 | Cite as

Effects of zebra mussels on cladoceran communities under eutrophic conditions

  • Irina Feniova
  • Piotr Dawidowicz
  • Jolanta Ejsmont-Karabin
  • Michail Gladyshev
  • Krystyna Kalinowska
  • Maciej Karpowicz
  • Iwona Kostrzewska-Szlakowska
  • Natalia Majsak
  • Varos Petrosyan
  • Vladimir Razlutskij
  • Marek Rzepecki
  • Nadezda Sushchik
  • Andrew R. Dzialowski
Primary Research Paper
  • 262 Downloads

Abstract

The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton.

Keywords

Zooplankton Chlorophyll Food quality Phosphorus limitation Life-table experiments 

Notes

Acknowledgements

Experiments were performed with the support by the Polish National Science Centre (UMO-2016/21/B/NZ8/00434). Statistical analysis and data interpretation for publication were supported by Russian Science Foundation (Grant No:16-14-10323). The elemental and biochemical analyses were supported by Russian Federal Tasks of Fundamental Research (Project No. 51.1.1), by the Council on Grants from the President of the Russian Federation for support of Leading Scientific Schools (Grant NSh-9249.2016.5) and by Federal Tasks of Ministry of Education and Science of the Russian Federation for Siberian Federal University (Project No. 6.1504.2017/PCh).

References

  1. Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.CrossRefGoogle Scholar
  2. Baker, S. M., J. S. Levington, J. P. Kurdziel & S. E. Shumway, 1998. Selective feeding and biodeposition by zebra mussels and their relation to changes in phytoplankton composition and seston load. Journal of shellfish research 17: 1207–1213.Google Scholar
  3. Baker, S. M., J. S. Levinton & J. E. Ward, 2000. Particle transport in the zebra mussel, Dreissena polymorpha (Pallas). The Biological Bulletin 199: 116–125.CrossRefPubMedGoogle Scholar
  4. Balushkina, E. V. & G. G. Vinberg, 1978. Relationship between body weight and size in plankton animals. In Vinberg, G. G. (ed.), Experimental and field investigations of biological production in lakes Zoological Institute. Academy of Sciences USSR, Leningrad: 58–72.Google Scholar
  5. Bergström, A.-K., D. Karlsson, J. Karlsson & T. Vrede, 2015. N-limited consumer growth and low nutrient regeneration N: P ratios in lakes with low N deposition. Ecosphere.  https://doi.org/10.1890/ES14-00333.1.CrossRefGoogle Scholar
  6. Brett, M., D. C. Müller-Navarra & S.-K. Park, 2000. Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnology and Oceanography 45: 1564–1575.CrossRefGoogle Scholar
  7. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.CrossRefPubMedGoogle Scholar
  8. Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology, Evolution, and Systematics 31: 343–366.CrossRefGoogle Scholar
  9. Chróst, R. J., T. Adamczewski, K. Kalinowska & A. Skowrońska, 2009. Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status. Journal of Microbiology and Biotechnology 19: 858–868.CrossRefGoogle Scholar
  10. DeMott, W. R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69: 334–340.CrossRefPubMedGoogle Scholar
  11. DeMott, W. R. & R. D. Gulati, 1999. Phosphorus limitation in Daphnia: evidence from a long term study of three hypereutrophic Dutch lakes. Limnology and Oceanography 44: 1557–1564.CrossRefGoogle Scholar
  12. Feniova, I., P. Dawidowicz, M. I. Gladyshev, I. Kostrzewska-Szlakowska, M. Rzepecki, V. Razlutskij, et al., 2015. Experimental effects of large-bodied Daphnia, fish and zebra mussels on cladoceran community and size structure. Journal of Plankton Research 37: 611–625.CrossRefGoogle Scholar
  13. Ghilarov, A. M., 1981. Coexistence of closely related species of Daphnia (Cladocera, Crustacea): one more display of plankton paradox. Doklady Akademii Nauk 257: 251–253.Google Scholar
  14. Gladyshev, M. I., V. I. Kolmakov, O. P. Dubovskaya & E. A. Ivanova, 2000. Studying of algae food composition of Daphnia longispina during bluegreen bloom of eutrophic pond. Doklady Akademii Nauk 371: 556–558.Google Scholar
  15. Gladyshev, M. I., N. N. Sushchik, A. A. Kolmakova, G. S. Kalachova, E. S. Kravchuk, O. N. Makhutova & E. A. Ivanova, 2007. Seasonal correlations of elemental and v-3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir. Aquatic Ecology 41: 9–23.CrossRefGoogle Scholar
  16. Gladyshev, M., N. N. Sushchik, O. P. Dubovskaya, O. N. Makhutova & G. S. Kalachova, 2008. Growth rate of Daphnia feeding on seston in a Siberian reservoir: the role of essential fatty acid. Aquatic Ecology 42: 617–627.CrossRefGoogle Scholar
  17. Gladyshev, M. I., N. N. Sushchik, O. P. Dubovskaya, Z. F. Buseva, O. N. Makhutova, E. B. Fefilova, et al., 2015. Fatty acid composition of Cladocera and Copepoda from lakes of contrasting temperature. Freshwater Biology 60: 373–386.CrossRefGoogle Scholar
  18. Gliwicz, Z. M., 2003. Between hazards of starvation and risk of predation: the ecology of off-shore animals Excellence in Ecology, Book 12. International Ecology Institute, Oldendorf/Luhe.Google Scholar
  19. Hartwich, M., D. Martin-Creuzburg, K.-O. Rothhaupt & A. Wacker, 2012. Oligotrophication of a large, deep lake alters food quantity and quality constraints at the primary producer-consumer interface. Oikos 121: 1702–1712.CrossRefGoogle Scholar
  20. Hessen, D. O. & T. Andersen, 2008. Excess carbon in aquatic organism and ecosystems: physiological, ecological and evolutionary implications. Limnology and Oceanography 53: 1685–1696.CrossRefGoogle Scholar
  21. Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.CrossRefGoogle Scholar
  22. Johnson, C. R. & C. Luecke, 2012. Copepod dominance contributes to phytoplankton nitrogen deficiency in lakes during periods of low precipitation. Journal of Plankton Research 34: 345–355.CrossRefGoogle Scholar
  23. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.Google Scholar
  24. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2002. Impacts of Zebra Mussels on Aquatic Communities and Their Role as Ecosystem Engineers. In Leppakoski, E. S., S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Kluwer Academic Publishers, Dordrecht: 433–446.CrossRefGoogle Scholar
  25. Kelly, D. W., L.-M. Herborg & H. J. MacIsaac, 2010. The Zebra Mussel in Europe. In van der Velde, G., S. Rajagopal & A. de Bij Vaate (eds), Ecosystem Changes Associated with Dreissena Invasions Recent Developments and Emerging Issues, 199–209. Backhuys Publishers, Leiden: 199–210.Google Scholar
  26. Makhutova, O. N., M. I. Gladyshev, A. A. Sylaieva, N. N. Sushchik, G. S. Kalachova, A. A. Protasov & I. A. Morozovskaya, 2013. Feeding spectra of bivalve mollusks Unio and Dreissena from Kanevskoe Reservoir, Ukraine: are they food competitors or not? Zoological Studies 52: 56, http://www.zoologicalstudies.com/content/52/1/56.
  27. McCauley, E., W. W. Murdoch & R. Nisbet, 1990. Growth, reproduction, and mortality of Daphnia pulex Leyding: life at low food. Functional Ecology 4: 505–514.CrossRefGoogle Scholar
  28. Müller-Navarra, D. C., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Archiv für Hydrobiologie 132: 297–307.Google Scholar
  29. Müller-Navarra, D. & W. Lampert, 1996. Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. Journal of Plankton Research 18: 1137–1157.CrossRefGoogle Scholar
  30. Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.CrossRefPubMedGoogle Scholar
  31. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  32. Petrosyan, V. G., 2014. The integrated database management system and the statistical analysis of biological data. Biosystem office. Russian Federal Service for Intellectual Property, Certificate 2014663194, Date of registration—18.12.2014 http://www1.fips.ru/fips_servl/fips_servlet?DB=EVMDocNumber = 2014663194TypeFile = html
  33. Pijanowska, J., P. Dawidowicz, A. Howe & L. J. Weider, 2006. Predator-induced shifts in Daphnia life-histories under different food regimes. Archiv für Hydrobiologie 167: 37–54.CrossRefGoogle Scholar
  34. Porter, K. G., Y. S. Feig & E. F. Vetter, 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia, and Bosmina fed natural bacteria. Oecologia 58: 156–163.CrossRefPubMedGoogle Scholar
  35. R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  36. Raikow, D. F., O. Sarnelle, A. E. Wilson & S. K. Hamilton, 2004. Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnology and Oceanography 49: 482–487.CrossRefGoogle Scholar
  37. Ravet, J. L., J. Persson & M. T. Brett, 2012. Threshold dietary polyunsaturated fatty acid concentrations for Daphnia pulex growth and reproduction. Inland Waters 2: 199–209.CrossRefGoogle Scholar
  38. Romanovsky, Yu E & I Yu Feniova, 1985. Competition among Cladocera: effect of different levels of food supply. Oikos 44: 243–252.CrossRefGoogle Scholar
  39. Semenchenko, V. P., V. I. Razlutskij, I. Y. Feniova & D. N. Aibulatov, 2007. Biotic relations affecting species structure in zooplankton communities. Hydrobiologia 579: 219–231.CrossRefGoogle Scholar
  40. Shea, K. & P. Chesson, 2002. Community ecology as a framework for biological invasions. Trends in Ecology and Evolution 17: 170–176.CrossRefGoogle Scholar
  41. Sikora, A. & P. Dawidowicz, 2014. Do the presence of filamentous cyanobacteria and an elevated temperature favor small-bodied Daphnia in interspecific competitive interactions? Fundamental and Applied Limnology 185: 307–314.CrossRefGoogle Scholar
  42. Sikora, A. B., Th Petzoldt, P. Dawidowicz & E. von Elert, 2016. Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size? Oecologia 182: 405–417.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sinicyna, O. O. & B. Zdanowski, 2007. Development of the zebra mussel, Dreissena polymorpha (Pall.), population in a heated lakes ecosystem. II. Life strategy. Archives of Polish Fisheries 15: 387–400.Google Scholar
  44. Sperfeld, E. & A. Wacker, 2011. Temperature- and cholesterol-induced changes in eicosapentaenoic acid limitation of Daphnia magna determined by a promising method to estimate growth saturation thresholds. Limnology and Oceanography 56: 1273–1284.CrossRefGoogle Scholar
  45. Standard Methods, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, USA.Google Scholar
  46. Sterner, R. W., 1997. Modeling interactions of food quality and quantity in homeostatic consumers. Freshwater Biology 38: 473–481.CrossRefGoogle Scholar
  47. Sterner, R. W., 1998. Demography of a natural population of Daphnia retrocurva in a lake with low food quality. Journal of Plankton Research 20: 471–489.CrossRefGoogle Scholar
  48. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  49. Sterner, R. W. & D. O. Hessen, 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics 25: 1–29.CrossRefGoogle Scholar
  50. Sterner, R. W. & K. L. Schulz, 1998. Zooplankton nutrition: recent progress and a reality check. Aquatic Ecology 32: 261–279.CrossRefGoogle Scholar
  51. Taipale, S. J., K. Vuorio, M. T. Brett, E. Peltomaa, M. Hiltunen & P. Kankaala, 2016. Lake zooplankton δ13C values are strongly correlated with the δ13C values of distinct phytoplankton taxa. Ecosphere 7: e01392.  https://doi.org/10.1002/ecs2.1392.CrossRefGoogle Scholar
  52. Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 10854–10861.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Urabe, J., J. Clasen & R. W. Sterner, 1997. Phosphorus limitation of Daphnia growth: is it real? Limnology and Oceanography 42: 1436–1443.CrossRefGoogle Scholar
  54. Urabe, J. & R. W. Sterner, 1996. Regulation of herbivore growth by the balance of light and nutrients. Proceeding of the National Academy of Sciences of the United States of America 93: 8465–8469.CrossRefGoogle Scholar
  55. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, et al., 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.CrossRefGoogle Scholar
  56. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.CrossRefGoogle Scholar
  57. Wacker, A. & E. von Elert, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82: 2507–2520.CrossRefGoogle Scholar
  58. Wilson, A. E., 2003. Effects of zebra mussels on phytoplankton and ciliates: a field mesocosm experiment. Journal of Plankton Research 25: 905–915.CrossRefGoogle Scholar
  59. Wojtal-Frankiewicz, A. & P. Frankiewicz, 2011. The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration. Limnologica 41: 191–200.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Irina Feniova
    • 1
  • Piotr Dawidowicz
    • 2
  • Jolanta Ejsmont-Karabin
    • 3
  • Michail Gladyshev
    • 4
    • 5
  • Krystyna Kalinowska
    • 6
  • Maciej Karpowicz
    • 7
  • Iwona Kostrzewska-Szlakowska
    • 8
  • Natalia Majsak
    • 9
  • Varos Petrosyan
    • 1
  • Vladimir Razlutskij
    • 9
  • Marek Rzepecki
    • 3
  • Nadezda Sushchik
    • 4
    • 5
  • Andrew R. Dzialowski
    • 10
  1. 1.Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
  2. 2.Department of Hydrobiology, Faculty of Biology, Biological and Chemical Research CenterUniversity of WarsawWarsawPoland
  3. 3.Nencki Institute of Experimental Biology, Hydrobiological StationMikołajkiPoland
  4. 4.Institute of Biophysics of Federal Research Centre, Krasnoyarsk Science Centre of Siberian Branch of Russian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  5. 5.Siberian Federal UniversityKrasnoyarskRussia
  6. 6.Department of Lake FisheriesInland Fisheries Institute in OlsztynGiżyckoPoland
  7. 7.Department of HydrobiologyInstitute of Biology, University of BialystokBialystokPoland
  8. 8.Faculty of BiologyUniversity of WarsawWarsawPoland
  9. 9.The Scientific and Practical Center for BioresourcesNational Academy of Sciences of BelarusMinskRepublic of Belarus
  10. 10.Department of Integrative BiologyOklahoma State UniversityStillwaterUSA

Personalised recommendations