Skip to main content
Log in

Osmoregulation in decapod crustaceans: physiological and genomic perspectives

  • CRUSTACEAN GENOMICS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A central question in evolutionary biology represents understanding the molecular basis of adaptive response to differing environmental salinity gradients. The capacity to osmoregulate is considered to be the principal function through which adaptation occurs in different or fluctuating osmotic niches. Decapod crustaceans represent an interesting research group for exploring the underlying genetic/genomic mechanisms involved with this process. The genomic basis of osmoregulation involves modifying expression patterns of candidate genes for ionic balance for short-/long-term acclimation to salinity change while long-term persistence in the altered salinity conditions can facilitate adaptation via novel mutations over an evolutionary time frame. So far, 32 candidate genes have been identified that have important functional roles in maintaining ionic balance across decapod crustacean lineages. Certain genes are considered to play principal/vital roles while others apparently have secondary or minor roles. This group of genes falls under several broad biological categories including: sensing osmotic stress, signal transduction, activating candidate genes, osmotic stress tolerance, ion transportation, active ion exchange, and regulation of cell volume. Most studies conducted to date have focused only on a few principal genes to better understand osmoregulatory processes, while minor role-playing genes remained largely unexplored. The information available currently reviewed here can provide important clues to decipher the molecular mechanisms involved with osmoregulation broadly across crustacean lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Augusto, A. S., L. J. Greene, H. Laure & J. C. McNamara, 2009. The ontogeny of isosmotic intracellular regulation in the diadro-mous, freshwater palaemonid shrimps, Macrobrachium amazonicum and M. olfersi (Crustacea, Decapoda). Journal of Crustacean Biology 27: 626–634.

    Article  Google Scholar 

  • Austin, C. M. & S. G. Ryan, 2002. Allozyme evidance for a new species of freshwater crayfish of the genus Cherax Erichson (Decapoda: Parastacidae) from the south-west of Western Australia. Invertebrate Systematics 16(3): 357–367.

    Article  Google Scholar 

  • Barman, H. K., S. K. Patra, V. Das, S. D. Mohapatra, P. Jayasankar, C. Mohapatra, R. Mohanta, R. P. Panda & S. N. Rath, 2012. Identification and characterization of differently expressed transcripts in the gills of freshwater prawn (Macrobrachium rosenbergii) under salt stress. The Scientific World Journal 2012: 1–11.

    Article  Google Scholar 

  • Berens, A. J., J. H. Hunt & A. L. Toth, 2014. Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie case phenotype across lineages of eusocial insects. Molecular Biology and Evolution 32(3): 690–703.

    Article  PubMed  Google Scholar 

  • Berkefeld, H., B. Fakler & U. Schulte, 2010. Ca+2 activated K+ channels: from protein complexes to function. Physiological Reviews 90(4): 1437–1459.

    Article  CAS  PubMed  Google Scholar 

  • Betancur-R, R., G. Orti, A. M. Stein, A. P. Marceniuk & R. A. Pyron, 2012. Apparent signal of competition limiting diversification after ecological transition from marine to freshwater habitats. Ecology Letters 15: 822–830.

    Article  PubMed  Google Scholar 

  • Bond-Buckup, G., C. G. Jara, M. Perez-Losada, L. Buckup & K. A. Crandall, 2008. Global diversity of crabs (Aeglidae: Anomura: Decapoda) in freshwater. Hydrobiologia 595: 267–273.

    Article  Google Scholar 

  • Boudour-Boucheker, N., V. Boulo, M. Charmantier-Daures, K. Anger, G. Charmantier & C. Lorin-Nebel, 2016. Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: expression patterns of ion transporter genes. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 195: 39–45.

    Article  CAS  Google Scholar 

  • Brennan, R. S., F. Galvez & A. Whitehead, 2015. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. Journal of Experimental Biology 218: 1212–1222.

    Article  PubMed  Google Scholar 

  • Chang, E. S., 2005. Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins. Integrative and Comparative Biology 45(1): 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., E. Li, T. Li, C. Xu, X. Wang, H. Lin, J. G. Qin & L. Chen, 2015. Transcriptome and molecular pathway analysis of hepatopancreas in the pacific white shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS ONE 10(7): e0131503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, T., C. Ren, Y. Wang, Y. Gao, N. K. Wong, L. Zhang & C. Hu, 2016. Crustacean cardiovascular peptide (CCAP) of the white pacific shrimp (Litopenaeus vannamei): molecular characterization and its potential roles in osmoregulation and freshwater tolerance. Aquaculture 451: 405–412.

    Article  CAS  Google Scholar 

  • Christie, A. E., M. Chi, T. J. Lameyer, M. G. Pascual, D. N. Shea, M. E. Stanhope, D. J. Schulz & P. S. Dickinson, 2015. Neuropeptidergic signaling in the American Lobster Homarus americanus: new insights from high-throughput nucleotide sequencing. PLoS ONE 10(12): e0145964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung, J. S., L. Maurer, M. Bratcher, J. S. Pitula & M. B. Ogburn, 2012. Cloning of aquaporin-1 of the blue crab, Callinectes sapidus: its expression during the larval development in hyposalinity. Aquatic Biosystems 8: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colbourne, J. K., M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold & M. K. Basu, 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555–561.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeFaveri, J., T. Shikano, Y. Shimada, A. Goto & J. Merila, 2011. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 65(6): 1800–1807.

    Article  PubMed  Google Scholar 

  • Ellegren, H., 2014. Genome sequencing and population genomics in non-model organisms. Trends in Ecology and Evolution 29(1): 51–63.

    Article  PubMed  Google Scholar 

  • Emerson, J. J. & W. H. Li, 2010. The genetic basis of evolutionary changes in gene expression levels. Philosophical Transactions of the Royal Society B 365: 2581–2590.

    Article  CAS  Google Scholar 

  • Faleiros, R. O., M. H. Goldman, R. P. Furriel & J. C. McNamara, 2010. Differential adjustment in gill Na+/K+- and V-ATPase activities and transporter mRNA expression during osmoregulatory acclimation in the cinnamon shrimp Macrobrachium amazonicum (Decapoda, Palaeomonidae). Journal of Experimental Biology 213: 3894–3905.

    Article  CAS  PubMed  Google Scholar 

  • Freire, C. A., H. Onken & J. C. McNamara, 2008. A structure function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology 151A: 272–304.

    Article  CAS  Google Scholar 

  • Furriel, R. P. M., K. C. S. Firmino, D. C. Masui, R. O. Faleiros, A. H. Torres & J. C. McNamara, 2010. Structural and biochemical correlates of Na+, K+-ATPase driven ion uptake across the posterior gill epithelium of the true freshwater crab, Dilocarcinus pagei (Branchyura, Trichodactylidae). Journal of Experimental Zoology 313A: 508–523.

    Article  CAS  Google Scholar 

  • Gao, Y. & M. G. Wheatly, 2004. Characterization and expression of plasma membrane Ca+2 ATPase (PMCA3) in the crayfish Procambarus clarkia antennal gland during molting. Journal of Experimental Biology 207: 2991–3002.

    Article  CAS  PubMed  Google Scholar 

  • Genovese, G., N. Ortiz, M. R. Urcolan & C. M. Luquet, 2005. Possible role of carbonic anhydrase, V-H+-ATPase, and Cl/HCO3 exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulates. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 142(3): 362–369.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, T. C., D. C. H. Metzger, T. M. Healy & P. M. Schulte, 2017. Gene expression plasticity in response to salinity acclimation in threespine stickleback ecotypes from different salinity habitats. Molecular Ecology 26(10): 2711–2725.

    Article  CAS  PubMed  Google Scholar 

  • Grave, S., Y. Cai & A. Anker, 2008. Global diversity of shrimps (Crustacea: Decapoda: Caridea) in freshwater. Hydrobiologia 595: 287–293.

    Article  Google Scholar 

  • Havird, J. C., R. P. Henry & A. E. Wilson, 2013. Altered expression of Na+/K+-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta analysis of 59 quantitative PCR studies over 10 years. Comparative Biochemistry and Physiology D: Genomics and Proteomics 8(2): 131–140.

    CAS  PubMed  Google Scholar 

  • Havird, J. C., S. R. Santos & R. P. Henry, 2014. Osmoregulation in Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers. Journal of Experimental Biology 217: 2309–2320.

    Article  PubMed  Google Scholar 

  • Hendry, A. P., 2016. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. Journal of Heredity 107: 25–41.

    Article  PubMed  Google Scholar 

  • Henry, R. P., C. Lucu, H. Onken & D. Weihrauch, 2012. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonic excretion, and bioaccumulation of toxic metals. Frontiers in Physiology 3: 1–33.

    Article  Google Scholar 

  • Jeong, C.-B., B.-M. Kim, J.-S. Lee & j-S Rhee, 2014. Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genomics 15: 651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavembe, G. D., P. Franchini, I. Irisarri, G. Machado-Schiaffino & A. Meyer, 2015. Genomics of adaptation to multiple concurrent stresses: insights from comparative transcriptomics of Cichlid fish from one of earth’s most extreme environments, the hypersaline soda lake in Kenya, East Africa. Journal of Molecular Evolution 81: 90–109.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. E. & M. A. Bell, 1999. Causes and consequences of recent freshwater invasions by saltwater animals. Trends in Ecology and Evolution 14(7): 284–288.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. E., M. Posavi & G. Charmantier, 2012. Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. Journal of Evolutionary Biology 25: 625–633.

    Article  PubMed  Google Scholar 

  • Lee, C. E., M. Kiergaard, G. W. Gelembiuk, B. D. Eads & M. Posavi, 2011. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65: 2229–2244.

    Article  CAS  PubMed  Google Scholar 

  • Leite, V. P. & F. P. Zanotto, 2013. Calcium transport in gill cells of Ucides cordatus, a mangrove crab living in variable salinity environments. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 166(2): 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Maury, L., S. Marguerat & J. Bahler, 2008. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptations. Nature Reviews Genetics 9: 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Loredo-Ranjel, R., M. L. Fanjul-Moles & E. G. Escamilla-Chimal, 2017. Crustacean hyperglycemic hormone is synthesized in the eyestalk and brain of the crayfish Procambarus clarkia. PLOS ONE 12: e0175046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovett, D. L., T. Colella, A. C. Cannon, D. H. Lee, A. Evangelisto, E. M. Muller & D. W. Towle, 2006. Effect of salinity on osmoregulatory patch epithelia in gills of the blue crab Callinectes sapidus. Biological Bulletins 210: 132–139.

    Article  CAS  Google Scholar 

  • Mack, K. L. & M. W. Nachman, 2017. Gene regulation and speciation. Trends in Genetics 33: 68–80.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Montanes, F., A. Pascual-Ahuir & M. Proft, 2010. Toward a genomic view of the gene expression program regulated by osmostress in yeast. OMICS 14: 619–627.

    Article  CAS  PubMed  Google Scholar 

  • McNamara, J. C. & S. C. Faria, 2012. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod crustacea: a review. Journal of Comparative Physiology 182B: 997–1014.

    Article  Google Scholar 

  • McNamara, J. C., C. A. Freire, A. H. Torres & S. C. Faria, 2015. The conquest of fresh water by palaemonid shrimps: an evolutionary history scripted in the osmoregulatory epithelia of the gills and antennal glands. Biological Journal of the Linnaean Society 114(3): 673–688.

    Article  Google Scholar 

  • Moshtaghi, A., M. L. Rahi, P. B. Mather & D. A. Hurwood, 2017. Understanding the genomic basis of adaptive response to variable osmotic niches in freshwater prawns: a comparative intraspecific RNA-Seq analysis of Macrobrachium australiense. Journal of Heredity 108(5): 1–10.

    Article  Google Scholar 

  • Moshtaghi, A., M. L. Rahi, P. B. Mather & D. A. Hurwood, (in review). An investigation of gene expression patterns that contribute to osmoregulation in Macrobrachium australiense: assessment of adaptive responses to different osmotic niches. Gene Reports (MS ID: GENREP-D-18-00090).

  • Moshtaghi, A., M. L. Rahi, V. T. Nguyen, P. B. Mather & D. A. Hurwood, 2016. A transcriptomic scan for potential candidate genes involved in osmoregulation in an obligate freshwater palaemonid prawn (Macrobrachium australiense). PeerJ 4: e2520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, N. & C. M. Austin, 2005. Phylogenetic relationships of the globally distributed freshwater prawn genus Macrobrachium: biogeography, taxonomy and the convergent evolution of abbreviated larval development. Zoologica Scripta 34: 187–197.

    Article  Google Scholar 

  • Mykles, D. L. & J. H. Hui, 2015. Neocaridina denticulata: a decapod crustacean model for functional genomics. Integrative and Comparative Biology 55(5): 891–897.

    Article  PubMed  Google Scholar 

  • Nadal, E. D., G. Ammerer & F. Posas, 2011. Controlling gene expression in response to stress. Nature Reviews Genetics 12: 833–844.

    Article  PubMed  Google Scholar 

  • Ordiano, A., F. Alvarez & G. Alcaraz, 2005. Osmoregulation and oxygen consumption of the hololimnetic prawn, Macrobrachium tuxtlaense at varying salinities (decapoda, palaeomonidae). Crustaceana 78(8): 1013–1022.

    Article  Google Scholar 

  • Orr, H. A., 2005. The genetic theory of adaptation: a brief history. Nature Reviews Genetics 6: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Pongsomboon, S., S. Udomlertpreecha, P. Amparyup, S. Wuthisuthimethavee & A. Tassanakajon, 2009. Gene expression and activity of carbonic anhydrase in salinity stressed Penaeus monodon. Comparative Biochemistry and Physiology A: Molecular and Integrative Physiology 152: 225–233.

    Article  PubMed  Google Scholar 

  • Rahi, M. L., S. Amin, P. B. Mather, D. A. Hurwood & A. Tassanakajon, 2017a. Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species M. koombooloomba. PeerJ 5: e2977.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahi, M.L., 2017b. Understanding the molecular basis of adaptation to freshwater environments by prawns in the genus Macrobrachium. PhD Thesis, Science and Engineering Faculty, Queensland University of Technology. https://doi.org/10.5204/thesis.eprints.118051.

  • Reuter, M., M. F. Camus, M. S. Hill, F. Ruzicka & K. Fowler, 2017. Evolving plastic responses to external and genetic environments. Trends in Genetics 33(3): 169–170.

    Article  CAS  PubMed  Google Scholar 

  • Romero, I. G., I. Ruvinsky & Y. Gilad, 2012. Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics 13: 505–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, L. A., D. A. Davis, I. P. Saoud & R. P. Henry, 2007. Branchial carbonic anhydrase activity and ninhydrin positive substances in the Pacific white shrimp, Litopenaeus vannamei, acclimated to low and high salinities. Comparative Biochemistry and Physiology 147A: 404–411.

    Article  CAS  Google Scholar 

  • Sang, H. M. & R. Fotedar, 2004. Growth, Survival, haemolymph osmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus kishinouye, 1896) reared at different salinities. Aquaculture 234: 601–614.

    Article  Google Scholar 

  • Santos, S., G. Bond-Buckup, A. S. Gonclaves, M. L. Bartholmei-Santos, L. Buckup & C. G. Jara, 2017. Diversity and conservation status of Aegla spp. (Anomura, Aeglidae): an update. The Journal of The Brazilian Crustacean Society 25: 1–14.

    Google Scholar 

  • Schlotterer, C., 2015. Genes from scratch- the evolutionary fate of de novo genes. Trends in Ecology and Evolution 31(4): 215–219.

    Google Scholar 

  • Schneider, R. F. & A. Meyer, 2017. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Molecular Ecology 26: 330–350.

    Article  PubMed  Google Scholar 

  • Shen, H., A. Braband & G. Scholtz, 2014. Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution 66: 776–789.

    Article  Google Scholar 

  • Sheng, Z., M. E. Pettersson, C. F. Honaker, B. P. Siegel & O. Carlborg, 2015. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment. Genome Biology 16: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stillman, J. H., J. K. Colbourne, C. E. Lee, N. H. Patel, M. R. Phillips, D. W. Towle, B. D. Eads, G. W. Gelembuik, H. P. Henry, E. A. Johnson, M. E. Pfrender & N. B. Terwilliger, 2008. Recent advances in crustacean genomics. Integrative and Comparative Biology 48(6): 852–868.

    Article  PubMed  Google Scholar 

  • Tautz, D. & T. Domazet-Loso, 2011. The evolutionary origin of orphan genes. Nature Reviews Genetics 12: 692–702.

    Article  CAS  PubMed  Google Scholar 

  • Tongsaikling, T., J. Salaenoi & M. Mingmuang, 2013. Ca+2 ATPase, carbonic anhydrase and alkaline phosphatase activities in red sternum mud crab (Scylla serrata). Kasetsart Journal of Natural Sciences 47: 252–260.

    CAS  Google Scholar 

  • Towle, D. W., R. P. Henry & N. B. Terwilliger, 2011. Microarray-detected changes in gene expression in gills of green crab (Carcinus maenus) upon dilution of environmental salinity. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 6: 115–125.

    Google Scholar 

  • Verbruggen, B., L. K. Bickley, E. M. Santos, C. R. Tyler, G. D. Stentiford, K. S. Bateman & R. V. Aerle, 2015. De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 16: 458.

    Article  Google Scholar 

  • Vogt, G., 2013. Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. Biological Reviews 88: 81–116.

    Article  PubMed  Google Scholar 

  • Wray, G. A., 2013. Genomics and the evolution of phenotypic trait. Annual Review of Ecology Evolution and Systematics 44: 51–72.

    Article  Google Scholar 

  • Zhang, X.-W., Y. Wang, X.-W. Wang, L. Wang, Y. Mu & J.-X. Wang, 2016. A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii. Scientific Reports 6: 29924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge insightful comments from the two anonymous reviewers that have greatly improved this manuscript. This study was funded by a QUT PRA (Queensland University of Technology Post Graduate Research Award) Scholarship and HDR (Higher Degree Research) Tuition Sponsorship to the first authors MLR and AM. The authors would like to gratefully acknowledge the support provided by Marie Curie International Research Staff exchange Scheme Fellowship within the 7th European Community Framework Program (612296-DeNuGReC) and the help from Central Analytical Research Facility (CARF) at Queensland University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Lifat Rahi.

Additional information

Guest editors: Guiomar Rotllant, Ferran Palero, Peter Mather, Heather Bracken-Grissom & Begoña Santos / Crustacean Genomics

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (FASTA 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahi, M.L., Moshtaghi, A., Mather, P.B. et al. Osmoregulation in decapod crustaceans: physiological and genomic perspectives. Hydrobiologia 825, 177–188 (2018). https://doi.org/10.1007/s10750-018-3690-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3690-0

Keywords

Navigation