, Volume 822, Issue 1, pp 217–228 | Cite as

High-throughput sequencing of the mitochondrial genomes from archived fish scales: an example of the endangered putative species flock of Sevan trout Salmo ischchan

  • Boris Levin
  • Evgeniy Simonov
  • Sergey Rastorguev
  • Eugenia Boulygina
  • Fedor Sharko
  • Svetlana Tsygankova
  • Bardukh Gabrielyan
  • Haikaz Roubenyan
  • Richard Mayden
  • Artem Nedoluzhko
Primary Research Paper


Sevan trout, Salmo ischchan, dwelling in the mountain Lake Sevan (Caucasus) is a unique species complex. Four sympatric forms of Sevan trout were divergent in both their phenotypes and ecologies. Three forms were lacustrine spawners but were unique in their spawning times and the type of substrate. The fish community of Lake Sevan was strongly impacted by human activity in twentieth century. Two forms of Sevan trout went extinct in the 1980s and the other two forms are at the brink of extinction. The present study demonstrated that archived/historical scales of extinct forms stored at room temperature for up to 44 years are a suitable source of DNA for high-throughput sequencing and for the reconstruction of mitochondrial genomes. In addition, we obtained the mitochondrial genomes of the extant forms for comparison to the extinct forms and reconstruction of a mitogenomic phylogeny of all forms of Sevan trout. The mitogenome gene arrangement was identical in all individuals studied with structure similar to other Salmo spp. The nucleotide sequence divergence between sympatric forms was shallow (P-distance = 0.0003–0.0012). A phylogenetic tree based on mitogenomes confirmed sister position of Sevan trout to the Caspian trout, Salmo trutta caspius (P-distance = 0.0049).


Historical DNA samples Salmonidae Species complex Genomics Mitogenome Phylogeny 



The authors are grateful to Mikhail V. Kovalchuk (National Research Centre “Kurchatov Institute,” Moscow, Russia) for his ongoing support, and Professor Yuri Gerassimov for logistics. We would like to thank Professor Nikolay Kolchanov, Dr. Alexander Pilipenko, and Dr. Rostislav Trapezov for permission to use the Interinstitutional Center of Molecular Paleogenetics infrastructure for DNA manipulations and helpful support. We are thankful to Dr. Alexander Golubtsov and three anonymous reviewers for their valuable comments on manuscript. We also appreciate the thoughtful discussions with Professor Axel Meyer and Professor Michael Mina on the concept of a species flock. This study was funded by the Russian Science Foundation, Grant No. 15-14-10020 (sampling and partially bioinformatics) and the National Research Centre “Kurchatov Institute” (DNA extraction, preparation of libraries, NGS-sequencing, and partially bioinformatics).

Supplementary material

10750_2018_3688_MOESM1_ESM.fas (211 kb)
Supplementary material 2 (FAS 211 kb)
10750_2018_3688_MOESM2_ESM.txt (9 kb)
Supplementary material 2 (TXT 9 kb)
10750_2018_3688_MOESM3_ESM.txt (2 kb)
Supplementary material 3 (TXT 1 kb)
10750_2018_3688_MOESM4_ESM.pdf (242 kb)
Supplementary material 4 (PDF 242 kb)
10750_2018_3688_MOESM5_ESM.pdf (44 kb)
Supplementary material 5 (PDF 44 kb)
10750_2018_3688_MOESM6_ESM.doc (108 kb)
Supplementary material 6 (DOC 107 kb)


  1. Adams, B. K., D. Cote & J. A. Hutchings, 2014. A genetic comparison of sympatric anadromous and resident Atlantic salmon. Ecology of Freshwater Fishes 25: 307–317.CrossRefGoogle Scholar
  2. Aghasyan, A. L. & M. Y. Kalashyan, 2010. The Red Data Book of the Animals of the Republic of Armenia. Yerevan.Google Scholar
  3. Alekseyev, S. S., V. P. Samusenok, A. N. Matveev & M. Y. Pichugin, 2002. Diversification, sympatric speciation, and trophic polymorphism of Arctic charr, Salvelinus alpinus complex, in Transbaikalia. Ecology, Behaviour and Conservation of the Charrs, Genus Salvelinus. Springer, Dordrecht: 97–114.CrossRefGoogle Scholar
  4. Aslanian, A. T., 1979. The problem of origination of Lake Sevan in the light of modern data. Bulletin of Academy of Sciences of Armenian SSR, Earth Sciences 32(3): 3–10 (in Russian).Google Scholar
  5. Babayan, A., S. Hakobyan, K. Jenderedjian, S. Muradyan, & M. Voskanov, 2007. Lake Sevan. In World Lakes. Experience and Lessons Learned Brief: 350–362.Google Scholar
  6. Bandelt, H. J., P. Forster & A. Röhl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37–48.CrossRefPubMedGoogle Scholar
  7. Barluenga, M., K. N. Stölting, W. Salzburger, M. Muschick & A. Meyer, 2006. Sympatric speciation in Nicaraguan Crater Lake cichlid fish. Nature 439(7077): 719–723.CrossRefPubMedGoogle Scholar
  8. Bernatchez, L. & A. Osinov, 1995. Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial DNA and nuclear gene variation. Molecular Ecology 4(3): 285–298.CrossRefPubMedGoogle Scholar
  9. Bernatchez, L., R. Guyomard & F. Bonhomme, 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Molecular Ecology 1(3): 161–173.CrossRefPubMedGoogle Scholar
  10. Beshera, K. A. & P. M. Harris, 2014. Mitochondrial DNA phylogeography of the Labeobarbus intermedius complex (Pisces, Cyprinidae) from Ethiopia. Journal of Fish Biology 85(2): 228–245.CrossRefPubMedGoogle Scholar
  11. Bogdanowicz, W., R. Rutkowski, B. K. Gabrielyan, A. Ryspaev, A. N. Asatryan, J. A. Mkrtchyan & B. M. Bujalska, 2017. Fish introductions in the former Soviet Union: the Sevan trout (Salmo ischchan) – 80 years later. PloS One 12(7): e0180605.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brawand, D., C. E. Wagner, Y. I. Li, M. Malinsky, I. Keller, S. Fan, et al., 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513(7518): 375–381.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cawdery, S. A. & A. Ferguson, 1988. Origins and differentiation of three sympatric species of trout (Salmo trutta L.) in Lough Melvin. Polish Archives of Hydrobiology 35: 267–277.Google Scholar
  14. Chernomor, O., A. von Haeseler & B. Q. Minh, 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Consuegra, S., C. García de Leániz, A. Serdio, M. González Morales, L. G. Straus, D. Knox & E. Verspoor, 2002. Mitochondrial DNA variation in Pleistocene and modern Atlantic salmon from the Iberian glacial refugium. Molecular Ecology 11(10): 2037–2048.CrossRefPubMedGoogle Scholar
  16. Crespi, B. J. & M. J. Fulton, 2004. Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Molecular Phylogenetics and Evolution 31(2): 658–679.CrossRefPubMedGoogle Scholar
  17. Dadikyan, M. G., 1986. Fishes of Armenia. AN Arm. SSR, Yerevan (in Russian).Google Scholar
  18. Der Sarkissian, C., L. Ermini, M. Schubert, M. A. Yang, P. Librado, M. Fumagalli, et al., 2015. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Current Biology 25(19): 2577–2583.CrossRefGoogle Scholar
  19. Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Franchini, P., C. Fruciano, M. L. Spreitzer, J. C. Jones, K. R. Elmer, F. Henning & A. Meyer, 2014. Genomic architecture of ecologically divergent body shape in a pair of sympatric Crater Lake cichlid fishes. Molecular Ecology 23(7): 1828–1845.CrossRefPubMedGoogle Scholar
  21. Fraser, D. J., L. K. Weir, L. Bernatchez, M. M. Hansen & E. B. Taylor, 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106(3): 404–420.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gabrielyan, B. K., 2010. Fishes of Lake Sevan. Publishing House “Gitutyun” of NAN RA, Yerevan.Google Scholar
  23. Grealy, A., K. Douglass, J. Haile, C. Bruwer, C. Gough & M. Bunce, 2016. Tropical ancient DNA from bulk archaeological fish bone reveals the subsistence practices of a historic coastal community in southwest Madagascar. Journal of Archaeological Science 75: 82–88.CrossRefGoogle Scholar
  24. Green, R. E., A. S. Malaspinas, J. Krause, A. W. Briggs, P. L. Johnson, C. Uhler, et al., 2008. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134(3): 416–426.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gum, B., J. Geist, S. Eckenfels & A. Brinker, 2014. Genetic diversity of upper Lake Constance whitefish Coregonus spp. under the influence of fisheries: a DNA study based on archived scale samples from 1932, 1975 and 2006. Journal of Fish Biology 84(6): 1721–1739.CrossRefPubMedGoogle Scholar
  26. Hahn, C., L. Bachmann & B. Chevreux, 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Research 41(13): e129.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hansen, M. M., 2002. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology 11(6): 1003–1015.CrossRefPubMedGoogle Scholar
  28. Hofman, C. A., T. C. Rick, R. C. Fleischer & J. E. Maldonado, 2015. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends in Ecology and Evolution 30(9): 540–549.CrossRefPubMedGoogle Scholar
  29. Horstkotte, J. & U. Strecker, 2005. Trophic differentiation in the phylogenetically young Cyprinodon species flock (Cyprinodontidae, Teleostei) from Laguna Chichancanab (Mexico). Biological Journal of the Linnean Society 85(1): 125–134.CrossRefGoogle Scholar
  30. Iwasaki, W., T. Fukunaga, R. Isagozawa, K. Yamada, Y. Maeda, T. P. Satoh, et al., 2013. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution 30(11): 2531–2540.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Johnston, S. E., M. Lindqvist, E. Niemelä, P. Orell, J. Erkinaro, M. P. Kent, et al., 2013. Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar). BMC Genomics 14(1): 439.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jrbashyan, R., G. Chlingaryan, Y. U. Kagramanov, A. Karapetyan, M. Satian, Y. U. Sayadyan, & H. Mkrtchyan, 2001. Geology of Meso-Cenozoic Basins in Central Armenia, with Comment on Indications of Hydrocarbons. Search and Discovery, 30007.Google Scholar
  33. Kondrashov, A. S. & M. V. Mina, 1986. Sympatric speciation: when is it possible? Biological Journal of the Linnean Society 27(3): 201–223.CrossRefGoogle Scholar
  34. Kontula, T., S. V. Kirilchik & R. Väinölä, 2003. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Molecular Phylogenetics and Evolution 27(1): 143–155.CrossRefPubMedGoogle Scholar
  35. Lanfear, R., B. Calcott, S. Y. Ho & S. Guindon, 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29(6): 1695–1701.CrossRefPubMedGoogle Scholar
  36. Lanfear, R., P. B. Frandsen, A. M. Wright, T. Senfeld & B. Calcott, 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772–773.Google Scholar
  37. Langmead, B. & S. L. Salzberg, 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Larsen, P. F., M. M. Hansen, E. E. Nielsen, L. F. Jensen & V. Loeschcke, 2005. Stocking impact and temporal stability of genetic composition in a brackish northern pike population (Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples. Heredity 95(2): 136–143.CrossRefPubMedGoogle Scholar
  39. Leigh, J. W. & D. Bryant, 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110–1116.CrossRefGoogle Scholar
  40. Levin, B. A. & H. R. Rubenyan, 2006. Threatened fishes of the world: Barbus goktschaicus Kessler, 1877 (Cyprinidae). Environmental Biology of Fishes 76(2): 409–410.CrossRefGoogle Scholar
  41. Levin, B. A., J. Freyhof, Z. Lajbner, S. Perea, A. Abdoli, M. Gaffaroğlu, et al., 2012. Phylogenetic relationships of the algae scraping cyprinid genus Capoeta (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution 62(1): 542–549.CrossRefPubMedGoogle Scholar
  42. Librado, P., C. Der Sarkissian, L. Ermini, M. Schubert, H. Jónsson, A. Albrechtsen, et al., 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences of USA 112(50): E6889–E6897.CrossRefGoogle Scholar
  43. Lien, S., B. F. Koop, S. R. Sandve, J. R. Miller, M. P. Kent, T. Nome, et al., 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533: 200–205.CrossRefPubMedGoogle Scholar
  44. Lushin, B. P., 1956. Issyk Kul gegarkuni trout. Izdatel’stvo AN KyrgyzSSR, Frunze (in Russian).Google Scholar
  45. Malinsky, M., R. J. Challis, A. M. Tyers, S. Schiffels, Y. Terai, B. P. Ngatunga, et al., 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African Crater Lake. Science 350(6267): 1493–1498.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mardanov, A. V., E. S. Bulygina, A. V. Nedoluzhko, V. V. Kadnikov, A. V. Beletskii, S. V. Tsygankova, et al., 2012. Molecular analysis of the intestinal microbiome composition of mammoth and woolly rhinoceros. Doklady Biochemistry and Biophysics 445(1): 203–206.CrossRefPubMedGoogle Scholar
  47. McKeown, N. J., R. A. Hynes, R. A. Duguid, A. Ferguson & P. A. Prodöhl, 2010. Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. Journal of Fish Biology 76(2): 319–347.CrossRefPubMedGoogle Scholar
  48. Medina, M., 2003. In DeSalle, R., G. Giribet & W. Wheeler (eds), Techniques in Molecular Systematics and Evolution. Methods and Tools in Biosciences and Medicine. Birkhäuser Verlag, Basel.Google Scholar
  49. Meyer, A., T. D. Kocher, P. Basasibwaki & A. C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347(6293): 550–553.CrossRefPubMedGoogle Scholar
  50. Milanovskiy, E. E., 1957. History of formation of Sevan depression in light of knowledge about neotectonics of Lesser Caucasus. In Proceedings of IV Geomorphological Conference on Studying Caucasus and Transcaucasia. Yerevan: 120–146.Google Scholar
  51. Miller, L. M. & A. R. Kapuscinski, 1997. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics 147(3): 1249–1258.PubMedPubMedCentralGoogle Scholar
  52. Nagelkerke, L. A. J., K. M. Leon-Kloosterziel, H. J. Megens, M. De Graaf, O. E. Diekmann & F. A. Sibbing, 2015. Shallow genetic divergence and species delineations in the endemic Labeobarbus species flock of Lake Tana, Ethiopia. Journal of Fish Biology 87(5): 1191–1208.CrossRefPubMedGoogle Scholar
  53. Nedoluzhko, A. V., S. M. Rastorguev, E. Simonov, E. S. Boulygina, F. S. Sharko, S. V. Tsygankova, et al., 2018a. Two complete mitochondrial genomes of extinct form of the Sevan trout Salmo ischchan danilewskii. Mitochondrial DNA Part B: Resources 3(1): 40–41.CrossRefGoogle Scholar
  54. Nedoluzhko, A. V., S. M. Rastorguev, E. Simonov, E. S. Boulygina, F. S. Sharko, S. V. Tsygankova, Q. Van Nguyen, et al., 2018b. Sequencing of two mitochondrial genomes of endangered form of the Sevan trout Salmo ischchan aestivalis. Mitochondrial DNA Part B: Resources 3(2): 469–471.CrossRefGoogle Scholar
  55. Nguyen, L.-T., H. A. Schmidt, A. von Haeseler & B. Q. Minh, 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.CrossRefPubMedGoogle Scholar
  56. Nielsen, E. E., M. M. Hansen & V. Loeschcke, 1997. Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Molecular Ecology 6(5): 487–492.CrossRefGoogle Scholar
  57. Nielsen, E. E., M. M. Hansen & V. Loeschcke, 1999. Analysis of applications DNA from old scale samples: technical aspects, and perspectives for conservation. Hereditas 130(3): 265–276.CrossRefGoogle Scholar
  58. Nielsen, E. E., J. A. T. Morgan, S. L. Maher, J. Edson, M. Gauthier, J. Pepperell, B. J. Holmes, M. B. Bennett & J. R. Ovenden, 2017. Extracting DNA from ‘jaws’: high yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material. Molecular Ecology Resources 17(3): 431–442.CrossRefPubMedGoogle Scholar
  59. Nikitin, A. G., I. Potekhina, N. Rohland, S. Mallick, D. Reich & M. Lillie, 2017. Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots. PloS ONE 12(2): e0172952.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, et al., 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499(7456): 74–78.CrossRefPubMedGoogle Scholar
  61. Osinov, A. G., 1990. On the origin of the Sevan trout: population-genetic approach. Zhurnal Obschchei Biologii 51: 817–827 (in Russian).Google Scholar
  62. Osinov, A. G. & L. Bernatchez, 1996. Atlantic and Danubian phylogenetic groupings of brown trout Salmo trutta complex: genetic divergence, evolution, and conservation. Journal of Ichthyology 36(9): 723–746.Google Scholar
  63. Perreault-Payette, A., A. M. Muir, F. Goetz, C. Perrier, E. Normandeau, P. Sirois & L. Bernatchez, 2017. Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Molecular Ecology 26(6): 1477–1497.CrossRefPubMedGoogle Scholar
  64. Pilipenko, A. S., R. O. Trapezov, A. A. Zhuravlev, V. I. Molodin & A. G. Romaschenko, 2015. MtDNA haplogroup A10 lineages in Bronze Age samples suggest that ancient autochthonous human groups contributed to the specificity of the indigenous west Siberian population. PLoS ONE 10(5): e0127182.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Praebel, K., R. Knudsen, A. Siwertsson, M. Karhunen, K. K. Kahilainen, O. Ovaskainen, et al., 2013. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and Evolution 3(15): 4970–4986.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rambaut, A., M. A. Suchard, D. Xie, & A. J. Drummond, 2014. Tracer v1.6 [available on internet at].
  67. Rezaei, A., S. Akhshabi & H. R. Jamalzadeh, 2017. Studies on the mitochondrial genomics in Salmo trutta caspius population in three rivers of Caspian Sea. Journal of Fisheries and Livestock Production 5(1): 1–9.Google Scholar
  68. Rogaev, E. I., Y. K. Moliaka, B. A. Malyarchuk, F. A. Kondrashov, M. V. Derenko, I. Chumakov & A. P. Grigorenko, 2006. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius. PLoS Biology 4(3): e73.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.CrossRefPubMedGoogle Scholar
  70. Sahoo, P. K., L. Singh, L. Sharma, R. Kumar, V. K. Singh, S. Ali, et al., 2016. The complete mitogenome of brown trout (Salmo trutta fario) and its phylogeny. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis 27(6): 4563–4565.CrossRefGoogle Scholar
  71. Salzburger, W., S. Baric & C. Sturmbauer, 2002. Speciation via introgressive hybridization in East African cichlids? Molecular Ecology 11(3): 619–625.CrossRefPubMedGoogle Scholar
  72. Sarkissyan, S. G., 1962. Petrographic and mineralogical investigation of Lake Sevan Basin. Izdatel’stvo AN ArmSSR, Yerevan (in Russian).Google Scholar
  73. Schliewen, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of Crater Lake cichlids. Nature 368(6472): 629–632.CrossRefPubMedGoogle Scholar
  74. Schön, I. & K. Martens, 2004. Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review. Organisms Diversity and Evolution 4(3): 137–156.CrossRefGoogle Scholar
  75. Seehausen, O. & C. E. Wagner, 2014. Speciation in freshwater fishes. Annual Review of Ecology, Evolution, and Systematics 45: 621–651.CrossRefGoogle Scholar
  76. Seehausen, O., E. Koetsier, M. V. Schneider, L. J. Chapman, C. A. Chapman, M. E. Knight, et al., 2003. Nuclear markers reveal unexpected genetic variation and a Congolese-Nilotic origin of the Lake Victoria cichlid species flock. Proceedings of the Royal Society of London B: Biological Sciences 270(1511): 129–137.CrossRefGoogle Scholar
  77. Sell, J. & Z. Spirkovski, 2004. Mitochondrial DNA differentiation between two forms of trout Salmo letnica, endemic to the Balkan Lake Ohrid, reflects their reproductive isolation. Molecular Ecology 13(12): 3633–3644.CrossRefPubMedGoogle Scholar
  78. Smith, M. J., C. E. Pascal, Z. A. C. Grauvogel, C. Habicht, J. E. Seeb & L. W. Seeb, 2011. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Molecular Ecology Resources 11(s1): 268–277.CrossRefPubMedGoogle Scholar
  79. Sokolov, A. S., A. V. Nedoluzhko, E. S. Boulygina, S. V. Tsygankova, F. S. Sharko, N. M. Gruzdeva, et al., 2016. Six complete mitochondrial genomes from Early Bronze Age humans in the North Caucasus. Journal of Archaeological Science 73: 138–144.CrossRefGoogle Scholar
  80. Sušnik, S., I. Knizhin, A. Snoj & S. Weiss, 2006. Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta. Journal of Fish Biology 68(A): 2–23.CrossRefGoogle Scholar
  81. Sušnik, S., A. Snoj, I. F. Wilson, D. Mrdak & S. Weiss, 2007. Historical demography of brown trout (Salmo trutta) in the Adriatic drainage including the putative S. letnica endemic to Lake Ohrid. Molecular Phylogenetics and Evolution 44: 63–76.CrossRefPubMedGoogle Scholar
  82. Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Timmermans, M. J., S. Dodsworth, C. L. Culverwell, L. Culverwell, L. Bocak, D. Ahrens, D. T. Littlewood, et al., 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Research. Scholar
  84. Vonlanthen, P., D. Bittner, A. G. Hudson, K. A. Young, R. Müller, B. Lundsgaard-Hansen, et al., 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482(7385): 357–362.CrossRefPubMedGoogle Scholar
  85. Wandeler, P., P. E. Hoeck & L. F. Keller, 2007. Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution 22(12): 634–642.CrossRefPubMedGoogle Scholar
  86. Živaljević, I., D. Popović, A. Snoj & S. Marić, 2017. Ancient DNA analysis of cyprinid remains from the Mesolithic–Neolithic Danube Gorges reveals an extirpated fish species Rutilus frisii (Nordmann, 1840). Journal of Archaeological Science 79: 1–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Boris Levin
    • 1
    • 2
  • Evgeniy Simonov
    • 1
    • 3
  • Sergey Rastorguev
    • 4
  • Eugenia Boulygina
    • 4
  • Fedor Sharko
    • 5
  • Svetlana Tsygankova
    • 4
  • Bardukh Gabrielyan
    • 6
  • Haikaz Roubenyan
    • 6
  • Richard Mayden
    • 7
  • Artem Nedoluzhko
    • 4
  1. 1.Laboratory of Fish Ecology, Papanin Institute for Biology of Inland WatersRussian Academy of SciencesYaroslavl’Russia
  2. 2.Cherepovets State UniversityCherepovetsRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.National Research Centre “Kurchatov Institute”MoscowRussia
  5. 5.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  6. 6.Scientific Center of Zoology and HydroecologyNational Academy of Sciences of Republic of ArmeniaYerevanArmenia
  7. 7.Department of BiologySaint Louis UniversitySt. LouisUSA

Personalised recommendations