Skip to main content
Log in

Unspecific histological and hematological alterations in anadromous and resident Salvelinus malma induced by volcanogenic pollution

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The streams draining Kamchatkan volcanic areas are perfect natural models producing the long-lasting effects similar to inorganic anthropogenic pollution. The most abundant local fish species Salvelinus malma is able to reproduce under highly unfavorable conditions: contamination with heavy metals and mineral suspensions. The aim of this study was to assess the adaptability of the landlocked and anadromous populations in adverse conditions. Here, we examined the liver toxicant accumulation in the overwintered S. malma juveniles, as well as aberrations in gills, internal organs, and peripheral blood. Compared to the anadromous populations the landlocked populations demonstrate poor ability to develop the mechanisms of decreasing toxicants’ bioaccumulation. The sets of histological and hematological alterations demonstrated a striking similarity for both ecotypes, and the difference in occurrence of tissue alterations was mostly insignificant. Extreme negative effects of the heavily polluted environment were: the secondary lamellas’ fusion, necrosis of liver and spleen tissues, erythrocyte morphological abnormalities, and elimination of germ cells. We suppose that the resistance to organs’ malfunctions is not the main adaptive vector in S. malma populations in the polluted streams, and expect the same long-term pattern of injury in the resident fish populations under anthropogenic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agius, C. & R. J. Roberts, 2003. Melano-macrophage centers and their role in fish pathology. Journal of Fish Diseases 26: 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Al-Bairuty, G., B. J. Shaw, R. D. Handy & T. B. Henry, 2013. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 126: 104–115.

    Article  PubMed  CAS  Google Scholar 

  • Amin, A. B., L. Mortensen & T. T. Poppe, 1992. Histology atlas. Normal structure of Salmonids. Akvapatologisk Laboratorium, Oslo.

    Google Scholar 

  • Bancroft, J. D. & M. Gamble, 2002. Theory and practice of histological techniques, 5th ed. Churchill Livingstone, New York.

    Google Scholar 

  • Beeton, A. M., J. Cairns, C. C. Coutant, R. Hartung, H. E. Johnson, P. Ruth, L. S. Lloyd, J. B. Sprague & D. M. Martin, 1972. Freshwater aquatic life and wildlife. Water quality criteria 1972. The environmental protection Agency, Wasington DC: 106–213.

    Google Scholar 

  • Bengtsonn, B.-E., C. Hill, A. Berman, I. Brandt, N. Johannson, C. Magnhagen, A. Sodergren & J. Thulin, 1999. Reproductive disturbance in Baltic fish: a synopsis of the FiRe project. Ambio 28: 2–8.

    Google Scholar 

  • Berg, L. & T. G. Northcote, 1985. Changes in territorial, gill-flaring, and feeding behaviour in juvenile coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Canadian Journal of Fisheries and Aquatic Sciences 42: 1410–1417.

    Article  Google Scholar 

  • Bernet, D., H. Schmidt, W. Meier, P. Burkhardt-Holm & T. Wahli, 1999. Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases 22: 25–34.

    Article  Google Scholar 

  • Bjornn, T. C. & D. W. Reiser, 1991. Habitat requirements of anadromous salmonids. Influences of Forest and Rangeland Management on Salmonid Fishes and Their Habitats. American Fisheries Society Special Publications 19: 83–138.

    Google Scholar 

  • Bogdanowicz, W., R. Rutkowski, B. K. Gabrielyan, A. Ryspaev, A. N. Asatryan, J. A. Mkrtchyan & B. M. Bujalska, 2017. Fish introductions in the former Soviet Union: the Sevan trout (Salmo ischchan) – 80 years later. PLoS ONE 12(7): e0180605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Branson, E. J. & T. Turnbull, 2008. Welfare and deformities in fish. In Branson, E. J. (ed.), Fish Welfare. Blackwell Publishing, Oxford: 202–216.

    Chapter  Google Scholar 

  • Bruno, D. V., B. Nowak & D. G. Elliott, 2006. Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections. Diseases of Aquatic Organisms 70: 1–36.

    Article  PubMed  CAS  Google Scholar 

  • Bury, N. R., P. A. Walker & C. N. Glover, 2003. Nutritive metal uptake in teleost fish. Journal of Experimental Biology 206: 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Butorina, T. E., O Yu Busarova & A. V. Ermolenko, 2011. The parasites of charr (Salmonidae: Salvelinus) of Holarctic. Dal’nauka Publ, Vladivostok (in Rus).

    Google Scholar 

  • Byczkowski, J. Z. & A. P. Kulkarni, 1998. Oxidative stress and pro-oxidant biological effects of vanadium. In Nriagu, J. O. (ed.), Vanadium in the environment. Part 2: health effects. Willey, New York: 235–264.

    Google Scholar 

  • Campbel, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences 42: 2034–2049.

    Article  Google Scholar 

  • Carol, D. W., P. S. Naden, D. M. Cooper & B. Gannon, 2002. A regional procedure to assess the risk to fish from sediment pollution in rivers. Integrated Water Resources Management 272: 401–407.

    Google Scholar 

  • Cassilas, E. & L. S. Smith, 1977. Effect of stress on blood coagulation and haematology in rainbow trout (Salmo gairdneri). Journal of Fish Biology 10: 481–491.

    Article  Google Scholar 

  • Chalov, S. R. & E. V. Esin, 2015. The principles of ecological classification of rivers in areas of contemporary volcanism (exemplified by Kamchatka). Geography and Natural Resources 36(1): 62–69.

    Article  Google Scholar 

  • Chalov, S., J. Pietroń, A. Tsyplenkov, A. Chalova, D. Shkolny & J. Jarsjö, 2017. Sediment sources, delivery and transport in a headwaters of volcanic watershed – Kamchatka Peninsula case study. Frontiers of Earth Science 11(3): 565–578.

    Article  CAS  Google Scholar 

  • Chowdhury, M. J., B. Baldisserotto & C. M. Wood, 2005. Tissue-specific calcium and metallothionein levels in rainbow trout chronically acclimated to waterborne of dietary cadmium. Archives of Environmental Contamination and Toxicology 48: 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Chu, K. W. & K. L. Chow, 2002. Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquatic Toxicology 61: 53–64.

    Article  Google Scholar 

  • Churova, M. V., S. A. Murzina, O. V. Meshcheryakova & N. N. Nemova, 2014. Metabolic enzymes activity and histomorphology in the liver of whitefish (Coregonus lavaretus L.) and pike (Esox lucius L.) inhabiting a mineral contaminated lake. Environmental Science and Pollution Research 21(23): 13342–13352.

    Article  PubMed  CAS  Google Scholar 

  • Collier, T. K., M. W. L. Chiang, D. W. T. Au & P. S. Rainbow, 2013. Biomarkers currently used in environmental monitoring. In Amiard-Triquet, C., J.-C. Amiard & P. S. Rainbow (eds), Ecological biomarkers. Indicators of Ecotoxicological Effects. CRS Press, London and New York: 384–410.

    Google Scholar 

  • Costa, P. M., M. S. Diniz, S. Caeiro, J. Lobo, M. Martins, A. M. Ferreira, M. Caetano, C. Vale & M. H. Costa, 2009. Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquatic Toxicology 92: 202–212.

    Article  PubMed  CAS  Google Scholar 

  • Crispo, E., J. D. DiBattista, C. Correa, X. Thibert-Plante, A. E. McKellar, A. K. Schwartz, D. Berner, L. F. De Leon & A. P. Hendry, 2010. The evolution of phenotypic plasticity in response to anthropogenic disturbance. Evolutionary Ecology Research 12: 47–66.

    Google Scholar 

  • Cuevas, N., I. Zorita, P. M. Costa, I. Quincoces, J. Larreta & J. Franco, 2015. Histopathological indices in sole (Solea solea) and hake (Merluccius merluccius) for implementation of the European Marine Strategy Framework Directive along the Basque continental shelf (SE Bay of Biscay). Marine Pollution Bulletin 94: 185–198.

    Article  PubMed  CAS  Google Scholar 

  • Culling, C. F. A., R. T. Allison & W. T. Barr, 1985. Cellular pathology technique, 4th ed. Butterworths Co. Publications, London.

    Google Scholar 

  • Dick, P. T. & D. G. Dixon, 1985. Changes in circulating blood cell levels of rainbow trout, Salmo gairdneri Richardson, following acute and chronic exposure to copper. Journal of Fish Biology 26: 475–484.

    Article  CAS  Google Scholar 

  • Douglas, A. H. & J. B. Sprague, 1979. Chronic toxicity of vanadium to flagfish. Water Research 13: 905–910.

    Article  Google Scholar 

  • Dussault, E. B., R. C. Playle, D. G. Dixon & R. S. McKinley, 2001. Effects of sublethal, acidic aluminum exposure on blood ions and metabolites, cardiac output, heart rate, and stroke volume of rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry 25: 347–357.

    Article  Google Scholar 

  • Eaton, J. G., 1973. Chronic toxicity of a copper, cadmium and zinc mixture to the fathead minnow (Pimephales promelas Rafinesque). Water Research 7: 1723–1736.

    Article  CAS  Google Scholar 

  • Eisler, R., 1993. Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wild. Serv. Biol. Rep. Contaminant Hazard Reviews. № 26, Washington D.C.

  • Elliott, M., K. L. Hemingway, D. Krueger, R. Thiel, K. Hylland, A. Arukwe, L. Förlin & M. Sayer, 2003. From the individual to the population and community responses to pollution. In Lawrence, A. J. & K. L. Hemingway (eds), Effects of pollution on fish. Blackwell, New York: 289–311.

    Google Scholar 

  • Esin, E. V., 2015. Developmental abnormalities in salmonids (Salmonidae) under the conditions of large-scale volcanic pollution of their spawning ground (using Dolly Varden Salvelinus malma as an example). Russian Journal of Developmental Biology 46: 88–98.

    Article  CAS  Google Scholar 

  • Esin, E. V., 2017. On the Dolly Varden’s Salvelinus malma (Salmonidae) biology in Kamchatkan spawning rivers of the volcanic areas. Journal of Ichthyology 57: 265–275.

    Article  Google Scholar 

  • Esin, E. V. & Yu V Sorokin, 2015. Effect of volcanism on environmental conditions and fauna in rivers of Eastern Kamchatka (using the example of watercourses flowing from Kikhpinych Volcano). Inland Water Biology. 8: 352–365.

    Article  Google Scholar 

  • Esin, E. V. & A. Fedosov, 2016. The effect of chronic volcanic pollution on the morphometric characteristics of juvenile Dolly Varden (Salvelinus malma W.) on the Kamchatka peninsula. Hidrobiologia 783: 295–307.

    Article  Google Scholar 

  • Esin, E. V., E. V. Shul’gina, D. A. Shirokov, D. A. Shirokov & D. V. Zlenko, 2018. Physiological adaptations in juvenile Dolly Varden Salvelinus malma (Salmonidae) dwelling polluted rivers of Kamchatka volcanic territories. Inland Water Biology 11: 195–206.

    Article  Google Scholar 

  • Evans, D. H., 1987. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives 71: 47–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FFA Standards of water quality for the fishery water objects. 2011. VNIRO publ., Moscow. http://ppt.ru/texts/index.phtml?id=45314

  • Feist, S. W. & M. Longshaw, 2008. Histopathology of fish parasite infections—importance for populations. Journal of Fish Biology 73: 2143–2160.

    Article  Google Scholar 

  • Feist, S. W., G. D. Stentiford, M. L. Kent, S. A. Ribeiro & P. Lorance, 2015. Histopathological assessment of liver and gonad pathology in continental slope fish from the northeast Atlantic Ocean. Marine Environmental Research 106: 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, H. W., 1995. Systematic pathology of fish. A text and atlas of comparative tissue responses in diseases of Teleosts, 3rd ed. State University Press, Iowa.

    Google Scholar 

  • Finlayson, B. J. & K. M. Verrue, 1982. Toxicities of copper, zinc, and cadmium mixtures to juvenile chinook salmon. Transactions of the American Fisheries Society. 111: 645–650.

    Article  CAS  Google Scholar 

  • Franssen, N. R., J. Harris, S. R. Clark, J. F. Schaefer & L. K. Stewart, 2012. Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration. Proceedings of the Royal Society B 280: 2012–2015.

    Article  Google Scholar 

  • Golovanova, I. L., 2008. Effect of heavy metals on physiological and biochemical status of fishes and aquatic invertebrates. Inland Water Biology 1: 93–108.

    Article  Google Scholar 

  • Hamilton, S. J., 2004. Review of selenium toxicity in the aquatic food chain. Science of the Total Environment 326(1–3): 1–31.

    PubMed  CAS  Google Scholar 

  • Hamilton, S. J. & K. J. Buhl, 1990. Acute toxicity of boron, molybdenum, and selenium to fry of chinook salmon and coho salmon. Archives of Environmental Contamination and Toxicology 19: 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Handy, R. D., T. Runnalls & P. M. Russell, 2002. Histopathologic biomarkers in three spined sticklebacks, Gasterosteus aculeatus, from several rivers in Southern England that meet the freshwater fisheries directive. Ecotoxicology 11: 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, D. E., P. C. Baumann, G. Gardner, W. E. Hawkins, J. D. Hendricks, R. A. Murchelano & M. S. Okihiro, 1992. Histopathologic biomarkers. In Huggett, R. J., R. A. Kimerli, P. M. Mehrle & H. L. Bergman (eds), Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis Publications, Boca Raton: 155–196.

    Google Scholar 

  • Ivanova, N. T., 1977. Methods of morphological blood analysis in ichthyologic-pathological studies. Izvestiya GosNIORKH 5: 114–117. (In Rus).

    Google Scholar 

  • Jezierska, B., K. Lugowska & M. Witeska, 2009. The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry 35: 625–640.

    Article  PubMed  CAS  Google Scholar 

  • Kodama, M., T. Ogata & K. Yamamori, 1982. Acute toxicity of zinc to rainbow trout Salmo gairdneri. Bulletin of the Japanese Society for the Science of Fish 48: 1055–1058.

    Article  CAS  Google Scholar 

  • Kurita, Y., S. Meier & O. S. Kjesbu, 2003. Oocyte growth and fecundity regulation by atresia of atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. Journal of Sea Research 49: 203–219.

    Article  Google Scholar 

  • Lake, R. G. & S. G. Hinch, 1999. Acute effects of suspended sediment angularity on juvenile coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences 56: 862–867.

    Article  Google Scholar 

  • Lawrence, A. J., 2003. Molecular effect and population response. In Lawrence, A. J. & K. L. Hemingway (eds), Effects of Pollution on Fish. Blackwell, New York: 256–288.

    Chapter  Google Scholar 

  • Liebel, S., M. E. M. Tomotake & R. C. A. Oliveira, 2013. Fish histopathology as biomarker to evaluate water quality. Ecotoxicology and Environmental Contamination 8: 9–15.

    Article  Google Scholar 

  • Lloyd, D. S., J. P. Koenings & J. D. LaPerriere, 1987. Effects of turbidity in fresh waters of Alaska. North American Journal of Fisheries Management 7: 18–33.

    Article  Google Scholar 

  • Lom, J. & I. Dukova, 1992. Protozoan parasites of fishes. Elsevier Science Publication, Amsterdam.

    Google Scholar 

  • Mallatt, J., 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences 42: 630–648.

    Article  CAS  Google Scholar 

  • Marks, S. D. & G. Rutt, 1997. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts. Hydrology and Earth System Sciences 1: 499–508.

    Article  Google Scholar 

  • Mebane, C. A., D. P. Hennessy & F. S. Dillon, 2008. Developing acute-to-chronic toxicity ratios for lead, cadmium, and zinc using rainbow trout, a mayfly, and a midge. Water, Air and Soil Pollution 188: 41–66.

    Article  CAS  Google Scholar 

  • Michel, C., S. Herzog, C. de Capitani, P. Burkhardt-Holm & C. Pietsch, 2014. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS ONE 9: e100856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mineev, A. K., 2012. Some hematological parameters of Perccottus glenii (Dybowski, 1877) from Lake Krugloe and Lake Plyazhnoe of Samara oblast. Russian Journal of Biological Invasions 3: 118–128.

    Article  Google Scholar 

  • Moiseenko, T. I., 2010. Effect of toxic pollution on fish populations and mechanisms for maintaining population size. Russian Journal of Ecology 41(3): 237–243.

    Article  CAS  Google Scholar 

  • Mumford, S., Heidel, J., Smith, C., Morrison, J., MacConnell, B. & V. Blazer, 2007. Fish histology and histopathology. V. 4. USFWS-NCTC, http://training.fws.gov/resources/course-resources/fish-histology/Fish_Histology_Manual_v4.pdf

  • Myers, N. & A. H. Knoll, 2001. The biotic crisis and the future of evolution. Proceedings of the Natural Academy of Sciences of the USA 98: 5389–5392.

    Article  CAS  Google Scholar 

  • Newcombe, C. P. & J. O. T. Jensen, 1996. Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management 16: 693–727.

    Article  Google Scholar 

  • NiShuilleabhain, S., C. Mothersill, D. Sheehan, N. O’Brien, J. O’Halloran, F. van Pelt, M. Kilemade & M. Davoren, 2006. Cellular responses in primary epidermal cultures from rainbow trout exposed to zinc chloride. Ecotoxicology and Environmental Safety 65: 332–341.

    Article  CAS  Google Scholar 

  • Nikinmaa, M., 1992. How does environmental pollution affect red cell function in fish? Aquatic Toxicology 22: 227–238.

    Article  CAS  Google Scholar 

  • Olsson, P.-E., P. Kling & C. Hogstrand, 1998. Mechanisms of heavy metal accumulation and toxicity in fish. In Langston, W. J. & M. J. Bebianno (eds), Metal metabolism in aquatic environments. Springer publ, Amsterdam: 321–350.

    Chapter  Google Scholar 

  • Peakall, D. W., 1994. Biomarkers: the way forward in environmental assessment. Toxicology and Ecotoxicology News 1: 55–60.

    Google Scholar 

  • Penrose, W. R., 1972. Arsenic in the marine and aquatic environment: analysis, occurrence and significance. Critical Reviews in Environmental Contamination 4: 465–482.

    Article  Google Scholar 

  • Reddy, P. B. & S. S. Rawat, 2013. Assessment of aquatic pollution using histopathology in fish as a protocol. International Research Journal of Environmental Sciences 2: 79–82.

    Google Scholar 

  • Roberts, R. J., 1989. Fish pathology, 2nd ed. Bailliere Tindall, London.

    Google Scholar 

  • Romeo, M. & L. Giamberini, 2013. History of biomarkers. In Amiard-Triquet, C., J.-C. Amiard & P. S. Rainbow (eds), Ecological biomarkers. Indicators of Ecotoxicological Effects. CRS Press, London and New York: 15–44.

    Google Scholar 

  • Salamat, N. & M. Zarie, 2012. Using of fish pathological alterations to assess aquatic pollution: a review. World Journal of Fish and Marine Sciences 4: 223–231.

    Google Scholar 

  • Sigler, J. W., 1990. Effects of chronic turbidity on anadromous salmonids: recent studies and assessment techniques perspectives. In Simenstad, C. A. (ed.), Effects of dredging on anadromous Pacific Coast fishes: workshop proceedings. University of Washington Sea Grant Program Seattle, Washington: 26–37.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: the principles and practice of statistics in biological research. Freeman & Co, New York: 850.

    Google Scholar 

  • Spehar, R. L., A. E. Lemke, Q. H. Pickering, T. H. Roush, R. C. Russo & J. D. Yount, 1981. Effects of pollution on freshwater fish. Journal of the Water Pollution Control Federation 53: 1028–1076.

    CAS  Google Scholar 

  • Speyer, M.R. & G. Leduc, 1975. Effects of arsenic trioxide on growth on rainbow trout. Abstracts of International Conference on Heavy Metals in the Environment. Toronto, Canada. Oct. 27–31: pp. 17–19.

  • Stehr, C. M., L. L. Johnson & M. S. Myers, 1998. Hydropic vacuolation in the liver of three species of fish from the U.S. West Coast: lesion description and risk assessment associated with contaminant exposure. Diseases of Aquatic Organisms 32: 119–135.

    Article  PubMed  CAS  Google Scholar 

  • Stendahl, D. H. & J. B. Sprague, 1982. Effects of water hardness and pH on vanadium lethality to rainbow trout. Water Research. 16: 1479–1488.

    Article  CAS  Google Scholar 

  • Stentiford, G. D., M. Longshaw, B. P. Lyons, G. Jones, M. Green & S. W. Feist, 2003. Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Marine Environmental Research 55: 137–159.

    Article  PubMed  CAS  Google Scholar 

  • Tazaki, K., M. Sato, S. van der Gaast & T. Morikawa, 2003. Effects of clay-rich river-dam sediments on downstream fish and plant life. Clay Minerals 38: 243–253.

    Article  CAS  Google Scholar 

  • Tipping, E., 1988. Colloids in the aquatic environment. Chemistry & Industry 15: 485–490.

    Google Scholar 

  • Torre, C. D., T. Petochi, I. Corsi, M. M. Dinardo, D. Baroni, L. Alcaro, S. Focardi, A. Tursi, G. Marino, A. Frigeri & E. Amato, 2010. DNA damage, severe organ lesions and high muscle levels of As and Hg in two benthic fish species from a chemical warfare agent dumping site in the Mediterranean Sea. Science of the Total Environment 408: 2136–2145.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, C. R., T. G. Pottinger, E. Santos, J. P. Sumpter, S.-A. Price, S. Brooks & J. J. Nagler, 1996. Mechanisms controlling egg size and number in the rainbow trout, Oncorhynchus mykiss. Biology of Reproduction 54: 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Wade, J. W. E., E. Omoregie & I. Ezenwaka, 2002. Toxicity of Cassava (Manihot esculenta Crantz) effluent of the Nile tilapia, Oreochromis niloticus (L.), under laboratory conditions. Journal of Aquatic Sciences 17: 89–94.

    Article  Google Scholar 

  • Waples, R. S., A. Elz, B. D. Arnsberg, J. R. Faulkner, J. J. Hard, E. Timmins-Schiffman & L. K. Park, 2017. Human-mediated evolution in a threatened species? Juvenile life history changes in Snake River salmon. Evolutionary Applications 10: 667–681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waser, W., O. Bausheva & M. Nikinmaa, 2009. The copper-induced reduction of critical swimming speed in rainbow trout (Oncorhynchus mykiss) is not caused by changes in gill structure. Aquatic Toxicology 94: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Wessel, M. L., W. W. Smoker & J. E. Joyce, 2006. Variation of morphology among juvenile chinook salmon of hatchery, hybrid, and wild origin. Transactions of the American Fisheries Society 135: 333–340.

    Article  Google Scholar 

  • Wester, P. W. & J. H. Canton, 1991. The usefulness of histopathology in aquatic toxicity studies. Comparative Biochemistry and Physiology 100: 115–117.

    CAS  Google Scholar 

  • Wolke, R. E., C. J. George & V. S. Blazer, 1995. Pigmented macrophage accumulations (MMC; PMB): possible monitors of fish health. In Hargis, W. J. (ed.), Parasitology and pathology of the World Oceans NOAA Technical Report NMFS 25. National Marine Fishery Service, Washington DC: 27–33.

    Google Scholar 

  • Yao, Q., X. Wang, H. Jian, H. Chen & Z. Yu, 2015. Characterization of the particle size fraction associated with heavy metals in suspended sediments of the yellow river. International Journal of Environmental Research and Public Health 12: 6725–6744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasutake, W. T. & J. H. Wales, 1983. Microscopic anatomy of salmonids: an Atlas. U.S. Dep. Inter. Fish and Wild. Ser, Washington DC.

    Google Scholar 

  • Zhang, W., L. Yu, M. Lu, S. M. Hutchinson & H. Feng, 2007. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China. Environmental Pollution 147: 238–244.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Yuriy V. Sorokin for his help in field sampling. The authors are grateful to Tatiana Gavrilova and Anastasia Sharapkova (Rosetta Stone MSU) for careful reading of the manuscript.

Funding

The field work was supported by the Russian Foundation for Basic Research, Project no. 15-05-10198. Analysis of water content was supported by the Russian Scientific Foundation, Project No. 14-17-00155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V. Esin.

Additional information

Handling editor: Michael Power

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esin, E.V., Nikiforova, A.I., Shulgina, E.V. et al. Unspecific histological and hematological alterations in anadromous and resident Salvelinus malma induced by volcanogenic pollution. Hydrobiologia 822, 237–257 (2018). https://doi.org/10.1007/s10750-018-3687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3687-8

Keywords

Navigation